实用标准文档精彩文案极限与连续的62个典型习题习题1设miai,,2,1,0,求nnmnnnaaa121)(lim.解记},,,max{21maaaa,则有aaaaannnnmnn1121)()(,aanlim.另一方面nnnnnmnnmamaaaa11121)()()(.因为1)lim(lim11nnnnmm,故amann1lim.利用两边夹定理,知aaaannmnnn121)(lim,其中},,max{21maaaa.例如9)9531(lim1nnnnn.习题2求)2211(lim222nnnnnnnnn.解nnnnnnnnnnnn22222211211212nnn,即nnnnnnnnnnnn22222211)2(2)1()1(2)1(2nnnn214211lim421lim)2(2)1(lim2nnnnnnnnnnn.2122211lim)1(2)1(lim22nnnnnnnnn.利用两边夹定理知21)2211(lim222nnnnnnnnn.实用标准文档精彩文案习题3求nnnn))1(1321211(lim.解nnnn))1(1321211(limnnnn))111()3121()211((lim1)1()111(lim)111(limnnnnnn11)111()111(limnnnn11)1()111(lim]))1(11([limnnnnn111ee习题4求),(11lim1Nnmxxmnx.解(变量替换法)令mnxt,则当1x时,.1t于是,原式nmttttttttttnmtnmt)1)(1()1)(1(lim11lim121211.习题5求xxxx)1(lim.解(变量替换法)令txtx,,,原式tttttttttt)11(lim)1(lim22tttt])11()11[(lim11ttttt)11()11(lim101eee.习题6求xxxxesin10)23(lim(1型)。为了利用重要极限,对原式变形xxxeexxxoxxxoxxxoxxxxexxexxxesin12112sin1sin1])211[(lim)212(lim)23(lim122sin1212])211[(limeexexxxxxexxxoxx实用标准文档精彩文案习题7求20211limxxxx.解原式)211()211)(211(lim20xxxxxxxx)211(41211lim220xxxxxxx)11)(211()11(2lim2220xxxxxx)11)(211(2lim20xxxx41242.习题8求23564lim2xxxx.解由于3223564lim23564lim22xxxxxxxx.而)23()564(lim23564lim222xxxxxxxxxx32)23()564(lim)23()564(||lim22xxxxxxxxxx23564lim23564lim22xxxxxxxx.故23564lim2xxxx不存在。习题9研究下列极限(1)xxxsinlim. 原式xxxsin1lim,其中01limxx,1|sin|x.∴上式极限等于0,即0sinlimxxx.(2)xxx1sinlim0.实用标准文档精彩文案因为1|1sin|x,0lim0xx,所以01sinlim0xxx.(3)xxx1sinlim.原式111sinlim11sinlim01xxxxxx.习题10计算)1,0(,)(lim10aaaxxxx.解原式xxxxaa10)1(limxxaxaxxxaa10)1(limxxxaxaxxxaa0lim10])1(lim[aeea1.习题111lnln1lim11lim11limln1ln11xxxexexxxxxxx111)]1(1ln[limln1lim0)1(ln0lnxxxexxx.习题12已知51lim21xcbxxx,求cb,的值。解首先01lim21cbcbxxx,∴cb1原式51)]([lim)1())(1(lim11ccxxcxxxx,∴6c,而7)61()1(cb.习题13下列演算是否正确?01sinsin1limsin1sinlim2022010有界xxxxxxxxx.习题14求)sin1(sinlimxxx.解原式21cos21sin2limxxxxx实用标准文档精彩文案21cos)1(21sinlim2xxxxx0.习题15求1sinlim232xxxx.解 0111lim1lim332xxxxxx,1|sin|2x,原式=0.习题16证明)()(limnmkbxkxenxmx(bknm,,,为常数)。证bxkxbxkxnxnmnxnxmx))((lim)(lim(令ynx11)bnykybkxyynmnxmx)()1(lim)(limbnknmynmkyynm)()1(limbnkynmknmyyynmynm)1(lim])1[(lim)()()(1nmknmkee.习题17求xxx30)sin1(lim.解原式3sin3sin10))sin(1(limexxxxx.习题18求axaxaxlnlnlim.解(连续性法)原式axaxaxaxaxax1)ln(limln1limaaxaaxaaxaaxaaxaax11])1(limln[]1ln[limaeaea1ln1ln1.实用标准文档精彩文案习题19试证方程bxaxsin(其中0,0ba)至少有一个正根,并且它不大于ba.证设xbxaxfsin)(,此初等函数在数轴上连续,)(xf在],0[ba上必连续。 ,0)0(bf而0]1)[sin()()sin()(baabbabaabaf若0)(baf,则ba就是方程bxaxsin的一个正根。若0)(baf,则由零点存在定理可知在),0(ba内至少存在一点),0(ba,使0)(f.即.sinba故方程bxaxsin至少有一正根,且不大于ba.习题21求xxxcos110)(coslim.解原式111cos10})]1(cos1{[limexxx.习题20设}{nx满足0nx且.1lim1rxxnnn试证.0limnnx证,1lim1rxxnnn取,,021Nr使得当Nn时有,211rrxxnn即,212101rrrxxnn亦即,1210nnxrx于是递推得NNnnnnxrxrxrx)21()21(210...221,0)21(lim,121NNnnxrr从而由两边夹准则有.0limnnx习题22用定义研究函数00011)(xxxxxf的连续性。证首先,当xxxfx11)(,0是连续的。同理,当实用标准文档精彩文案0)(,0xfx也是连续的。而在分段点0x处),0(00lim)(lim00fxfxx).0(011lim)(lim00fxxxfxx).0()(lim0fxfx所以故.),()(Cxf习题2...