电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

垂直于弦的直径-(2)VIP免费

垂直于弦的直径-(2)_第1页
1/3
垂直于弦的直径-(2)_第2页
2/3
垂直于弦的直径-(2)_第3页
3/3
垂直于弦的直径教学设计教学内容垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用.教学目标利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重点:垂径定理及其运用.难点:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程一、复习引入1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)圆是轴对称图形,它的对称轴是直径所在直线,我们能找到无数多条直径.二、探索新知我们用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的.因此,我们可以得到:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(学生活动)请同学按下面要求完成下题:如图,AB是⊙O的一条弦,作直径CD,使CDAB⊥,垂足为M.BACDOM(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你理由.(老师点评)(1)是轴对称图形,其对称轴是CD.(2)AM=BM,ACBC,ADBD,即直径CD平分弦AB,并且平分AB及ADB.这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.下面我们用逻辑思维给它证明一下:已知:直径CD、弦AB且CDAB⊥垂足为M求证:AM=BM,ACBC,ADBD.分析:要证AM=BM,只要证AM、BM构成的两个三角形全等.因此,只要连结OA、OB或AC、BC即可.CEDOFBACEDONM证明:如图,连结OA、OB,则OA=OB在RtOAM△和RtOBM△中OAOBOMOMRtOAMRtOBM∴△≌△AM=BM∴∴点A和点B关于CD对称O∵⊙关于直径CD对称∴当圆沿着直线CD对折时,点A与点B重合,AC与BC重合,AD与BD重合.∴ACBC,ADBD进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中CD,点O是CD的圆心,其中CD=600m,E为CD上一点,且OECD⊥,垂足为F,EF=90m,求这段弯路的半径.分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.解:如图,连接OC设弯路的半径为R,则OF=(R-90)mOECD∵⊥CF=∴12CD=12×600=300(m)根据勾股定理,得:OC2=CF2+OF2即R2=3002+(R-90)2解得R=545∴这段弯路的半径为545m.三、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.解:不需要采取紧急措施设OA=R,在RtAOC△中,AC=30,CD=18R2=302+(R-18)2R2=900+R2-36R+324解得R=34(m)连接OM,设DE=x,在RtMOE△中,ME=16BACOM342=162+(34-x)2162+342-68x+x2=342x2-68x+256=0解得x1=4,x2=64(不合设)DE=4∴∴不需采取紧急措施.四、课堂反馈(课件展示小练习)五、小结(学生归纳,老师点评)本节课应掌握:1.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.3.垂径定理及其推论以及它们的应用.六、布置作业教材P94复习巩固1、2、3.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

垂直于弦的直径-(2)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部