备战数学应考能力大提升典型例题例1如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD·AE,求∠BAC的大小.解析:(1)证明:由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧所对的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(2)因为△ABE∽△ADC,所以=,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为△ABC的内角,所以∠BAC=90°.例2如图,AB、CD是圆的两条平行弦,BE∥AC,并交CD于E,交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(1)求AC的长;(2)求证:EF=BE.解析:(1)∵PA2=PC·PD,PA=2,PC=1,∴PD=4.又∵PC=ED=1,∴CE=2.∵∠PAC=∠CBA,∠PCA=∠CAB,△PAC∽△CBA,∴=,∴AC2=PC·AB=2,∴AC=.(2)证明:∵CE·ED=BE·EF,BE=AC=,∴EF==,∴EF=BE.创新题型1.如图,PA切⊙O于点A,割线PBC交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E,求证:(1)AD=AE;(2)AD2=DB·EC.2.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB、FC.(1)求证:FB=FC;(2)求证:FB2=FA·FD;(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.答案2(1)证明:∵AD平分∠EAC,∴∠EAD=∠DAC.∵四边形AFBC内接于圆,∴∠DAC=∠FBC.∵∠EAD=∠FAB=∠FCB,∴∠FBC=∠FCB,∴FB=FC.(2)证明:∵∠FAB=∠FCB=∠FBC,∠AFB=∠BFD,∴△FBA∽△FDB.∴=,∴FB2=FA·FD.(3)∵AB是圆的直径,∴∠ACB=90°.∵∠EAC=120°,∴∠DAC=∠EAC=60°,∴∠BAC=∠BFC=60°,∠FDB=30°,∴△FBC为正三角形,又BC=6,在Rt△ABC中,∴AC=2,∴在Rt△ACD中,AD=4.