第五讲:函数的单调性知识点睛一、函数的单调性1.单调函数的定义增函数减函数定义设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象逐渐上升自左向右看图象逐渐下降2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.二、函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M①对于任意x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M结论M为最大值M为最小值经典精讲[例1]证明函数f(x)=2x-在(-∞,0)上是增函数.[例2](2012·长沙模拟)设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数k,定义函数fk(x)=,取函数f(x)=2-|x|.当k=时,函数fk(x)的单调递增区间为()A.(-∞,0)B.(0,+∞)C.(-∞,-1)D.(1,+∞)[例3](1)若f(x)为R上的增函数,则满足f(2-m)0且a≠1).6.已知f(x)=(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.7.函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0.(1)求f(1)的值;(2)判断f(x)的单调性并加以证明;