电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

二次函数y=ax2+bx+c的图像与性质VIP免费

二次函数y=ax2+bx+c的图像与性质_第1页
1/42
二次函数y=ax2+bx+c的图像与性质_第2页
2/42
二次函数y=ax2+bx+c的图像与性质_第3页
3/42
26.1二次函数图象和性质(5)1.的顶点坐标是________,对称轴是__________2.怎样把的图象移动,便可得到的图象?(h,k)复习提问复习提问2yaxhk直线x=h23yx2325yx3.的顶点坐标是,对称轴是.2325yx(-2,-5)直线x=-24.在上述移动中图象的开口方向、形状、顶点坐标、对称轴,哪些有变化?哪些没有变化?有变化的:抛物线的顶点坐标、对称轴,没有变化的:抛物线的开口方向、形状我们复习了将抛物线向左平移2个单位再向下平移5个单位就得到的图象,将化为一般式为,那么如何将抛物线的图像移动,得到的图像呢?新课23yx2325yx2325yx23127yxx23yx23127yxx的图象怎样平移就得到2yax2yaxbxc那么一般地,函数的图象呢?1.用配方法把2yaxbxc2yaxhk化为的形式。的形式,求出顶点坐标和对称轴。215322yxx2yaxhk例1用配方法把化为答案:,顶点坐标是(1,5),对称轴是直线x=1.的形式,求出顶点坐标和对称轴。2247yxx2yaxhk2215yx练习1用配方法把化为的形式,求出对称轴和顶点坐标.21522yxx2yaxhk例2用公式法把化为21522yxx15,1,22abc221541144221,2112422422bacbaa21122yx解:在中,,∴顶点为(1,-2),对称轴为直线x=1。的形式,并求出顶点坐标和对称轴。答案:,顶点坐标为(2,2)对称轴是直线x=22286yxx2yaxhk2222yx练习2用公式法把化成3.2yaxbxc图象的画法.2yaxbxc2yaxhk步骤:1.利用配方法或公式法把化为的形式。2.确定抛物线的开口方向、对称轴及顶点坐标。3.在对称轴的两侧以顶点为中心左右对称描点画图。(3)开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。4.二次函数2yaxbxc的性质:(1)顶点坐标24,;24bacbaa(2)对称轴是直线2bxa2bxa24-,4acbya最小=2bxa24-;4acbya最大=如果a>0,当时,函数有最小值,如果a<0,当时,函数有最大值,(4)最值:2bxa2bxa2bxa2bxa①若a>0,当时,y随x的增大而增大;当时,y随x的增大而减小。②若a<0,当时,y随x的增大而减小;当时,y随x的增大而增大。(5)增减性:与y轴的交点坐标为(0,c)(6)抛物线2yaxbxc与坐标轴的交点①抛物线2yaxbxc2yaxbxc12,0,,0xx12,xx20axbxc②抛物线与x轴的交点坐标为,其中为方程的两实数根例4已知抛物线247,yxkxk①k取何值时,抛物线经过原点;②k取何值时,抛物线顶点在y轴上;③k取何值时,抛物线顶点在x轴上;④k取何值时,抛物线顶点在坐标轴上。,所以k=-4,所以当k=-4时,抛物线顶点在y轴上。,所以k=-7,所以当k=-7时,抛物线经过原点;②抛物线顶点在y轴上,则顶点横坐标为0,即解:①抛物线经过原点,则当x=0时,y=0,所以200407kk40221kba,所以当k=2或k=-6时,抛物线顶点在x轴上。③抛物线顶点在x轴上,则顶点纵坐标为0,即③抛物线顶点在x轴上,则顶点纵坐标为0,即22417440441kkacba24120kk122,6kk,整理得,解得:④由②、③知,当k=-4或k=2或k=-6时,抛物线的顶点在坐标轴上。22417440441kkacba解法一(配方法):例5当x取何值时,二次函数有最大值或最小值,最大值或最小值是多少?2281yxx因为所以当x=2时,。因为a=2>0,抛物线有最低点,所以y有最小值,2281yxx224218842,7222442bacbaa-7y最小值=-总结:求二次函数最值,有两个方法.(1)用配方法;(2)用公式法.解法二(公式法):又例6已知函数,当x为何值时,函数值y随自变量的值的增大而减小。211322yxx解法一:,102a∴抛物线开口向下,211699...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

二次函数y=ax2+bx+c的图像与性质

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部