探索性问题巩固练习1.已知直线l⊥平面α,直线m平面β,有下面四个命题,其中正确命题是()①α∥βl⊥m②α⊥βl∥m③l∥mα⊥β④l⊥mα∥βA.①与②B.①与③C.②与④D.③与④2.某邮局只有0.60元,0.80元,1.10元的三种邮票.现有邮资为7.50元的邮件一件,为使粘贴邮票的张数最少,且资费恰为7.50元,则最少要购买邮票()A.7张B.8张C.9张D.10张3.观察sin220°+cos250°+sin20°cos50°=,sin215°+cos245°+sin15°·cos45°=,写出一个与以上两式规律相同的一个等式.4.在四棱锥P—ABCD中,侧棱PA⊥底面ABCD,底面ABCD是矩形,问底面的边BC上是否存在点E.(1)使∠PED=90°;(2)使∠PED为锐角.证明你的结论.5.已知非零复数z1,z2满足|z1|=a,|z2|=b,|z1+z2|=c(a、b、c均大于零),问是否根据上述条件求出?请说明理由.6.是否存在都大于2的一对实数a、b(a>b)使得ab,,a–b,a+b可以按照某一次序排成一个等比数列,若存在,求出a、b的值,若不存在,说明理由.7.直线l过抛物线y2=2px(p>0)的焦点且与抛物线有两个交点,对于抛物线上另外两点A、B直线l能否平分线段AB?试证明你的结论.8.三个元件T1、T2、T3正常工作的概率分别为0.7、0.8、0.9,将它们的某两个并联再和第三个串联接入电路,如图甲、乙、丙所示,问哪一种接法使电路不发生故障的概率最大?用心爱心专心9.老师给出一个函数y=f(x),四个学生甲、乙、丙、丁各指出这个函数的性质:乙:在(-∞,0]上函数递减;丙:在(0,+∞)上函数递增;丁:f(0)不是函数的最小值.如果其中恰有三个人说得正确,请写出一个这样的函数:___.10.是否存在常数a、b、c,使得等式1·2+2·3+…+n(n+1)=(an+bn+c)对一切自然数n都成立?并证明你的结论。11.已知数列,…,,…。S为其前n项和,求S、S、S、S,推测S公式,并用数学归纳法证明12.给定双曲线x-=1,①过点A(2,0)的直线L与所给双曲线交于P及P,求线段PP的中点P的轨迹方程;②过点B(1,1)能否作直线m,使m与所给双曲线交于两点Q、Q,且点B是线段Q、Q的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由。13.设{a}是正数组成的数列,其前n项的和为S,并且对于所有的自然数n,a与2的等差中项等于S与2的等比中项。①写出数列{a}的前3项;②求数列{a}的通项公式(写出推证过程);③令b=(+)(n∈N),求(b+b+…+b-n)。14.已知x>0,x≠1,且x=(n∈N),比较x与x的大小。15.已知三个向量a、b、c,其中每两个之间的夹角为120°,若|a|=3,|b|=2,|c|=1,则a用b、c表示为.16.假设每一架飞机引擎在飞行中故障率为1–p,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行,则对于多大的p而言,4引擎飞机比2引擎飞机更为安全?17.已知函数(a,c∈R,a>0,b是自然数)是奇函数,f(x)有最大值,且f(1)>.用心爱心专心(1)求函数f(x)的解析式;(2)是否存在直线l与y=f(x)的图象交于P、Q两点,并且使得P、Q两点关于点(1,0)对称,若存在,求出直线l的方程,若不存在,说明理由.18.如图,三条直线a、b、c两两平行,直线a、b间的距离为p,直线b、c间的距离为,A、B为直线a上两定点,且|AB|=2p,MN是在直线b上滑动的长度为2p的线段.(1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E;(2)接上问,当△AMN的外心C在E上什么位置时,d+|BC|最小,最小值是多少?(其中d是外心C到直线c的距离)答案用心爱心专心1.解析:①l⊥α且α∥βl⊥β,mβl⊥m.②α⊥β且l⊥αl∥β,但不能推出l∥m.③l∥m,l⊥αm⊥α,由mβα⊥β.④l⊥m,不能推出α∥β.答案:B2.解析:选1.1元5张,0.6元2张,0.8元1张.故8张.答案:B3.解析:由50°–20°=(45°–15°)=30°可得sin2α+cos2(α+30°)+sinαcos(α+30°)=.答案:sin2α+cos2(α+30°)+sinαcos(α+30°)=4.解:(1)当AB≤AD时,边BC上存在点E,使∠PED=90°;当AB>AD时,使∠PED=90°的点E不存在.(只须以AD为直径作圆看该圆是否与BC边有无交点)(证略)(2)边BC上总存在一点,使∠PED为锐角,点B就是其中一点.连接BD,作AF⊥BD,垂足为F,连PF, PA⊥面ABCD,∴PF⊥BD,又△ABD为...