5.边边边【教学目标】知识与技能使学生理解边边边定理的内容,能运用边边边证明三角形全等,进而说明线段或角相等.过程与方法经历探索三个角或三条边对应相等的两个三角形是否全等的过程,体会如何探索研究问题,培养学生的合作精神.情感、态度与价值观通过画图、比较、验证,注重学生观察、思考、不断总结的良好习惯.【重点难点】重点掌握边边边判定三角形全等定理.难点灵活应用边边边定理解题.【教学过程】一、创设情景,导入新课【教师活动】(出示教具)提出问题:一块三角形的玻璃损坏后,只剩下如图2所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,剪下模板就可去割玻璃了.【教师活动】其中的数学道理,让我们一起来探究!二、师生互动,探究新知【教师活动】同排两个同学用尺规画底边为3cm,4cm,4.8cm的三角形,再把这两个三角形放在一起看它们是否全等.【学生活动】(1)画一段线段AB使它的长度等于c(4.8cm).(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.(3)连结AC、BC,得到△ABC.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在观察实践的基础上,学生回答;三边分别相等的两个三角形全等.教师板书:S.S.S.(边边边).【教师活动】多媒体呈现练习题.已知△ABC中,AB=AC,AD是中线,求证:∠B=∠C.证明: AD是中线,∴BD=CD,在△ABD与△ACD中,AB=AC,AD=AD,BD=CD.∴△ABD≌△ACD(S.S.S.)∴∠B=∠C.三、随堂练习,巩固新知【例】如图,已知AB=DC,AD=BC.求证:∠A=∠C.【答案】连接BD.在△BAD和△DCB中,因为AB=CD,AD=CB,BD=DB(公共边),所以△BAD≌△DCB(边边边),所以∠A=∠C(全等三角形的对应角相等).四、典例精析,拓展新知【例】如图,在△ABC与△DCB中,AB=DC,AC=BD,AC与BD交于M.求证:BM=CM.证明:在△ABC与△DCB中,AC=BD,AB=CD,BC=CB,∴△ABC≌△DCB(S.S.S.),∴∠A=∠D,在△ABM与△DCM中,AB=CD,∠A=∠D,∠AMB=∠DMC,∴△ABM≌△DCM(A.A.S.),∴BM=CM.【教学说明】本题涉及到两次证全等三角形的问题,注意从证明的需要寻找要转化的条件.五、运用新知,深化理解已知四边形ABCD中,AB=CD,AD=BC,求证:AD∥BC.【教学说明】本题没有两个三角形,可通过连接AC构成两个全等的三角形来证明∠DAC=∠BCA,从而证明AD∥BC.应启发学生如何证明AD∥BC?没有全等三角形怎么办?六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?并与同伴交流,在学生交流发言的基础上教师归纳总结.本节课探讨出可用(S.S.S.)来识别两个三角形全等,并能灵活运用(S.S.S.)来识别三角形全等.三个角对应相等的两个三角形不一定会全等.以及如何依据题中所给条件,寻求证明方法等.【教学反思】这节课探索S.S.S.时,学生通过全过程的画图,观察、比较、交流,逐步得出基本事实S.S.S..在这个过程中不仅得到了全等三角形全等的判定方法,同时增加了学生的数学体验,在探索过程中体验了数学的乐趣.基于课程标准,让不同的学生得到不同的发展,典例精析中两次用到全等三角形,可能有少数学生还不很适应,教师应引导他们如何逆向分析,寻找证明条件,提升解题能力.6.斜边直角边【教学目标】知识与技能使学生理解斜边直角边定理的内容,能运用斜边直角边证明三角形全等,进而说明线段或角相等.过程与方法经历探索直角三角形全等条件H.L.的过程,掌握直角三角形全等的条件,并能运用其解决一些实际问题.情感、态度与价值观学习事物的特殊、一般关系、发展逻辑思维能力.培养学生善于思考、不断探索的良好习惯.【重点难点】重点掌握斜边直角边定理.难点灵活应用斜边直角边定理解题.【教学过程】一、创设情景,导入新课问题:证明一般三角形全等有哪些方法?我们已经知道,对于两个三角形,如果有“边角边”或“角边角”或“角角边”或“边边边”分别对应相当,那么这两个三角形一定全等.如果有“边边角”分别对应相等,那么能不能保证这两个三角形全等呢?(出示课件)思考:一般三角形不一定全等,对于...