1.61.6微积分基本定理微积分基本定理(2)(2)1.61.6微积分基本定理微积分基本定理(2)(2)微积分基本定理:设函数f(x)在区间[a,b]上连续,并且F’(x)=f(x),则,baaFbFxxf)()(d)(这个结论叫微积分基本定理(fundamentaltheoremofcalculus),又叫牛顿-莱布尼茨公式(Newton-LeibnizFormula).).()()(d)(aFbFxFxxfbaba或记作说明:牛顿-莱布尼茨公式提供了计算定积分的简便的基本方法,即求定积分的值,只要求出被积函数f(x)的一个原函数F(x),然后计算原函数在区间[a,b]上的增量F(b)–F(a)即可.该公式把计算定积分归结为求原函数的问题。|bacx11|1nbaxn++cos|bax-sin|bax定积分公式'6)()xxbxaedeex®==ò'7)()lnbxxxaadxaaa=®=ò'15)(ln)1baxxdxx=®=ò'1)()bacxccdx=®=ò'12)nnbnaxxxnxd-®==ò'3)(sin)coscosbaxxxdx®==ò'4)(cos)sinsinbaxdxxx=-=®òln|||bax|xbae|lnxbaaa问题:通过计算下列定积分,进一步说明其定积分的几何意义。通过计算结果能发现什么结论?试利用曲边梯形的面积表示发现的结论.2sinxdx20sinxdx我们发现:(1)定积分的值可取正值也可取负值,还可以是0;(2)当曲边梯形位于x轴上方时,定积分的值取正值;(3)当曲边梯形位于x轴下方时,定积分的值取负值;(4)当曲边梯形位于x轴上方的面积等于位于x轴下方的面积时,定积分的值为0.得到定积分的几何意义:曲边梯形面积的代数和。例3:计算20(),fxdx2,01()5,12xxfxx其中解20dx)x(f102xdx215dx102x215x612F(x)=2xY=5的解析式求且点是一次函数,其图象过、已知)(,1)(),4,3()(110xfdxxfxf微积分与其他函数知识综合举例:的最大值。求、已知)(,)2()(21022afdxxaaxaf练一练:已知f(x)=ax²+bx+c,且f(-1)=2,f’(0)=0,的值求cbadxxf,,,2)(10