cos(4530)cos45cos30?猜想:是否等于cos()coscos说明cos()?sin()?那么::sin()sincoscossin:sin()sincoscossin:cos()coscossinsin:cos()coscossinsinSSCC“正余余正符号同”“余余正正符号异”例一.求值:(1)sin105(2)cos15(1)sin105sin(4560)解:sin45cos60cos45sin6021232622224(2)cos15cos(4530)cos45cos30+sin45sin30232126+22224变式练习:——公式的逆用(1)cos53cos23sin53sin23;(2)cos()cossin()sin44求值:=cos(5323)解:(1)原式3cos302=cos[(+)]4(2)原式2cos42例2.453sin,(,),cos,(,)52132cos(),sin()已知,求(,),cos0,2解:因为所以3cos,53(,),sin0,2因为所以12sin,13cos()coscossinsin35412()()()513513336535cos,cos(),(0,),(0,)5132sincos变式练习.已知求、()提示:(0,),sin0,2解:因为所以4sin,5+(0,),sin()0,因为所以12sin(),13sinsin[()]sin()coscos()sin1235456()13513565例3.()sin3cosfxxx的最大值和周期13()2(sincos)22fxxx2(cossinsincos)33xx2sin()3x2(),32xkkZmax226xky即时,解:22T最小正周期你还有其他做法吗?法二:13()2(sincos)22fxxx2(sinsincoscos)66xx2cos()6x2(),6xkkZmax226xky即时,22T最小正周期变式练习:()sin2cos2fxxx求的最小正周期和最大值()2sin(2)4fxx答案:max()2,fxT()sincosfxaxbx总结:222222(sincos)ababxxabab22()(cossinsincos)fxabxx2222cos=sin=ababab令,22sin()abx辅助角公式