电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

简单的线性规划(二)VIP免费

简单的线性规划(二)_第1页
1/15
简单的线性规划(二)_第2页
2/15
简单的线性规划(二)_第3页
3/15
简单的线性规划第二讲线性规划复习二元一次不等式表示的平面区域Oxy在平面直角坐标系中,以二元一次方程x+y-1=0的解为坐标的点的集合{(x,y)|x+y-1=0}是经过点(0,1)和(1,0)的一条直线l,那么以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y)|x+y-1>0}是什么图形?11x+y-1=0探索结论结论:二元一次不等式ax+by+c>0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域。不等式ax+by+c<0表示的是另一侧的平面区域。x+y-1>0x+y-1<0复习判断二元一次不等式表示哪一侧平面区域的方法Oxy11x+y-1=0x+y-1>0x+y-1<0由于对在直线ax+by+c=0同一侧所有点(x,y),把它的坐标(x,y)代入ax+by+c,所得的实数的符号都相同,故只需在这条直线的某一侧取一特殊点(x0,y0)以ax0+by0+c的正负的情况便可判断ax+by+c>0表示这一直线哪一侧的平面区域,特殊地,当c≠0时常把原点作为此特殊点复习二元一次不等式表示平面区域的范例例1画出不等式2x+y-6<0表示的平面区域。Oxy36注意:把直线画成虚线以表示区域不包括边界2x+y-6=0复习二元一次不等式表示平面区域的范例例2画出不等式组表示的平面区域。3005xyxyxOxy35x-y+5=0x+y=0x=3复习二元一次不等式表示平面区域的范例例3画出不等式组表示的平面区域。53006xyyxyxx=5x-y=0y=3CBA665x+y-6=003xy线性规划问题:设z=2x+y,式中变量满足下列条件:求z的最大值与最小值。1255334xyxyx探索结论线性规划问题:设z=2x+y,式中变量满足下列条件:求z的最大值与最小值。1255334xyxyx目标函数(线性目标函数)线性约束条件CBAx=1x-4y+3=03x+5y-25=0xOy启动几何画板线性规划线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.可行解:满足线性约束条件的解(x,y)叫可行解;可行域:由所有可行解组成的集合叫做可行域;最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)线性规划例1解下列线性规划问题:求z=2x+y的最大值和最小值,使式中x、y满足下列条件:11yyxxy解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。探索结论C(12,12)B(2,-1)A(-1,-1)xOy2x+y=02x+y=-32x+y=3答案:当x=-1,y=-1时,z=2x+y有最小值-3.当x=2,y=-1时,z=2x+y有最大值3.线性规划例2解下列线性规划问题:求z=300x+900y的最大值和最小值,使式中x、y满足下列条件:探索结论x+3y=0300x+900y=0300x+900y=112500答案:当x=0,y=0时,z=300x+900y有最小值0.当x=0,y=125时,z=300x+900y有最大值112500.0025023002yxyxyxC125250150BAx+2y=2502x+y=300xOy线性规划练习1(2004高考全国卷4理科数学试题(必修+选修Ⅱ甘肃青海宁夏贵州新疆等地区)第16题)解下列线性规划问题:求z=2x+y的最大值,使式中x、y满足下列条件:探索结论,0,,1yxyyx答案:当x=1,y=0时,z=2x+y有最大值2。启动几何画板线性规划练习2解下列线性规划问题:求z=3x+y的最大值,使式中x、y满足下列条件:探索结论3x+y=03x+y=29答案:当x=9,y=2时,z=3x+y有最大值29.00672432yxyyxyxCBAy=6x-y=72x+3y=24(9,2)(3,6)8(0,6)12(7,0)xOy线性规划小结解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。探索结论线性规划作业:P64习题7.42探索结论

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

简单的线性规划(二)

您可能关注的文档

百万精品文库+ 关注
实名认证
内容提供者

学习课件教案小学中学资料大全

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部