电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学二轮复习 专题一 第5讲 导数与实际应用及不等式问题提升训练 理-人教版高三全册数学试题VIP免费

(江苏专用)高考数学二轮复习 专题一 第5讲 导数与实际应用及不等式问题提升训练 理-人教版高三全册数学试题_第1页
1/4
(江苏专用)高考数学二轮复习 专题一 第5讲 导数与实际应用及不等式问题提升训练 理-人教版高三全册数学试题_第2页
2/4
(江苏专用)高考数学二轮复习 专题一 第5讲 导数与实际应用及不等式问题提升训练 理-人教版高三全册数学试题_第3页
3/4
第5讲导数与实际应用及不等式问题一、填空题1.已知函数f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,则实数m的取值范围是________.解析f′(x)=x2-4x,由f′(x)>0,得x>4或x<0.∴f(x)在(0,4)上单调递减,在(4,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)min=f(4).∴要使f(x)+5≥0恒成立,只需f(4)+5≥0恒成立即可,代入解之得m≥.答案2.若存在正数x使2x(x-a)<1成立,则a的取值范围是________.解析 2x(x-a)<1,∴a>x-.令f(x)=x-,∴f′(x)=1+2-xln2>0.∴f(x)在(0,+∞)上单调递增,∴f(x)>f(0)=0-1=-1,∴a的取值范围为(-1,+∞).答案(-1,+∞)3.(2014·江苏卷)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析作出二次函数f(x)的图象,对于任意x∈[m,m+1],都有f(x)<0,则有即解得-<m<0.答案4.(2015·南师附中调研)已知函数f(x)=x3-x2-3x+,直线l:9x+2y+c=0,若当x∈[-2,2]时,函数y=f(x)的图象恒在直线l下方,则c的取值范围是________.解析根据题意知x3-x2-3x+<-x-在x∈[-2,2]上恒成立,则->x3-x2+x+,设g(x)=x3-x2+x+,则g′(x)=x2-2x+,则g′(x)>0恒成立,所以g(x)在[-2,2]上单调递增,所以g(x)max=g(2)=3,则c<-6.答案(-∞,-6)5.如图,某飞器在4千米高空水平飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为______________.解析设所求解析式为y=ax3+bx2+cx+d(a≠0), 函数图象过(0,0)点,∴d=0.又图象过(-5,2),(5,-2),1∴函数为奇函数.∴b=0,代入可得-125a-5c=2,①又y′=3ax2+c,当x=-5时,y′=75a+c=0,②由①②得a=,c=,∴函数解析式为y=x3-x.答案y=x3-x6.(2015·全国Ⅱ卷改编)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是________.解析因为f(x)(x∈R)为奇函数,f(-1)=0,所以f(1)=-f(-1)=0.当x≠0时,令g(x)=,则g(x)为偶函数,且g(1)=g(-1)=0.则当x>0时,g′(x)=′=<0,故g(x)在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x<1时,g(x)>g(1)=0⇔>0⇔f(x)>0;在(-∞,0)上,当x<-1时,g(x)<g(-1)=0⇔<0⇔f(x)>0.综上,得使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).答案(-∞,-1)∪(0,1)7.(2015·苏、锡、常、镇模拟)设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为________.解析若x=0,则不论a取何值,f(x)≥0显然成立;当x>0时,即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥-.令g(x)=-,则g′(x)=,所以g(x)在区间上单调递增,在区间上单调递减.因此g(x)max=g=4,从而a≥4.当x<0时,即x∈[-1,0)时,同理a≤-.g(x)在区间[-1,0)上单调递增,所以g(x)min=g(-1)=4,从而a≤4,综上可知a=4.答案48.(2015·青岛模拟)已知函数f(x)=x-,g(x)=x2-2ax+4,若对于任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是________.解析由于f′(x)=1+>0,因此函数f(x)在[0,1]上单调递增,所以x∈[0,1]时,f(x)min=f(0)=-1.根据题意可知存在x∈[1,2],使得g(x)=x2-2ax+4≤-1,即x2-2ax+5≤0,即a≥+能成立,令h(x)=+,则要使a≥h(x)在x∈[1,2]能成立,只需使a≥h(x)min,又函数h(x)=+在x∈[1,2]上单调递减,所以h(x)min=h(2)=,故只需a≥.答案二、解答题9.(2015·天津卷改编)已知函数f(x)=nx-xn,x∈R,其中n∈N*,n≥2.(1)讨论f(x)的单调性;(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x).(1)解由f(x)=nx-xn,可得f′(x)=n-nxn-1=n(1-xn-1).其中n∈N*,且n≥2,下面分两种情况讨论:2①当n为奇数时.令f′(x)=0,解得x=1,或x=-1.当x变化时,f′(x),f(x)的变化情况如下表:x(...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学二轮复习 专题一 第5讲 导数与实际应用及不等式问题提升训练 理-人教版高三全册数学试题

您可能关注的文档

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部