单项式一、教学目的1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.2.注意培养学生归纳、概括能力,以及运算能力.3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.二、重点、难点重点:掌握单项式与单项式相乘的法则.难点:分清单项式与单项式相乘中,幂的运算法则.三、教学过程复习提问:什么是单项式?什么叫单项式的系数?什么叫单项式的次数?引言我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).一、新课导入看下面的例子:计算(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).同学们按以下提问,回答问题:(1)2x2y·3xy2①每个单项式是由几个因式构成的,这些因式都是什么?2x2y·3xy2=(2·x2·y)·(3·x·y2)②根据乘法结合律重新组合2x2y·3xy2=2·x2·y·3·x·y2③根据乘法交换律变更因式的位置2x2y·3xy2=2·3·x2·x·y·y2④根据乘法结合律重新组合2x2y·3xy2=(2·3)·(x2·x)·(y·y2)⑤根据有理数乘法和同底数幂的乘法法则得出结论2x2y·3xy2=6x3y3按以上的分析,写出(2)的计算步骤:(2)4a2x2·(-3a3bx)=4a2x2·(-3)a3bx=[4·(-3)]·(a2·a3)·(x2·x)·b=(-12)·a5·x3·b=-12a5bx3.二、归纳出单项式乘单项式的运算步骤是:①系数相乘为积的系数;②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;④单项式与单项式相乘,积仍是一个单项式;⑤单项式乘法法则,对于三个以上的单项式相乘也适用.三、例子讲解.1计算以下各题:(1)4n2·5n3;(2)(4×105)·(5×106)·(3×104).解:(1)4n2·5n3=(4·5)·(n2·n3)=20n5;(2)(4·105)·(5·106)·(3·104)=(4·5·3)·(105·106·104)=60·1015=6·1016.四、学生课堂作业:(3)(-5amb)·(-2b2);(4)(-3ab)(-a2c)·6ab2.=3x3y3;(3)(-5amb)·(-2b2);=[(-5)·(-2)]·am·(b·b2)=10amb3(4)(-3ab)·(-a2c)·6ab2=[(-3)·(-1)·6]·(aa2a)·(bb2)·c=18a4b3c.五、课后反思单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.