“切线的判定和性质”的应用教学设计与反思版本:人民教育出版社第9年级下册第24.3节第2课时2013年10月8日星期二单位:高滩初级中学备课人:陈清源教材分析:“切线的判定和性质”是人教版九年义务教育三年制初级中学几何第五册第24章第二节的内容,是学生已经学习了直线和圆的三种位置关系之后提出来的。切线的判定定理、性质定理是研究三角形的内切圆、切线长定理以及后面研究两圆的位置关系和正多边形与圆的关系的基础。学好它,对今后数学、物理等学科的学习会有很大的帮助。针对义务教材弹性特点和我我所教学生的实际水平,本着因材施教的教学原则,本节课在重点处理完本课内容切线的判定定理和例1后,我引导学生进行例2的探究,与例1结合起来,构成了有关切线证明问题中常见的两种类型,以及常用的两种辅助线作法。设计理念:为将新课程标准真正落实到本课的教学中,我改变了“复习引入—讲授新知—巩固新知—课堂小结—布置作业”这种传统的教学模式。对本课的教学内容进行开放性设计,注重引导学生在小组合作学习中探究和体验,落实在“做中学”。教学目标:1、通过学生自己探究(猜想、类比、演绎)过程,让学生发现切线的判定定理,并能说明方法的正确性。2、在定理的发现过程中,让学生体验“观察—猜想—论证—归纳”的数学研究的方法。3、通过这节内容的教学,使学生获得猜想的认识过程以及“添加辅助线”的解决问题的方法4、培养学生动手操作的能力,通过直观教具的演示好指导学生动手操作的过程,激发学生学习几何的主动性和积极性。教学重点:发现并证明切线的判定定理,认识切线在实际生活中的应用。教学难点:体验圆的切线证明问题中辅助线的添加方法。教学准备:1、教师课前制作的多媒体课件。2、教师自制的课堂演示教具。教学过程:一、问题的提出:(多媒体显示问题)1.直线与圆有哪三种位置关系?判断的标准是什么?2.什么叫圆的切线?怎样判定一条直线是不是圆的切线?(学生先观察、猜想,在让学生和教师一道用自制教具进行演示)通过以上演示探究,我们发现可以用切线的定义来判定一条直线是不是圆的切线,但有时使用起来很不方便。为此,我们有必要学习切线的判定定理。(多媒体显示课题):切线的判定定理二、新知探索(定理的发现):上节课学习了“圆心到一条直线的距离等于该圆的半径,则该直线就是圆的一条切线”这一定义。下面请同学们把我们刚刚的实验操作用作图步骤归纳出来:画出⊙O;在⊙O上任取一点A;连接OA;过点A作直线l⊥OA.(完成后,请同学们猜想,直线l是不是⊙O的切线?它满足哪些条件?)。学生猜想:一条直线满足:经过半径的外端;垂直于这条半径,那么这条直线是圆的切线。(让学生试图用文字语言加以概括)OBATOOOAAllAl1图2图3图OCAB结合所画图形,引导学生分析:因为直线l⊥OA,所以圆心O到直线l的距离等于OA,而OA正好是圆O的半径,根据“当圆心到直线的距离等于该圆的半径时,直线就是圆的一条切线”可知直线l是圆O的切线。(多媒体显示)切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(分析两个条件及几何语言的书写)提问:生活中你看到哪些现象是直线和圆相切的位置关系的?(学生回答,教师补充)如:下雨天,转动雨伞,雨伞上的水滴会沿着什么方向飞出?车轮和笔直的公路;磨砂轮上的火花等。练一练:判断下列说法是否正确。(多媒体显示)(1)过半径外端的直线是圆的切线.()(2)与半径垂直的直线是圆的切线.()(3)过半径的端点且与半径垂直的直线是圆的切线。()(4)经过直径的端点且与直径垂直的直线是圆的切线()(学生判断、操作后,教师用多媒体演示下列反例)显然,图(1)中直线l经过半径外端,但不与半径垂直;图(2)、(3)中直线l与半径垂直,但不经过半径外端。在亲身体验的基础上,让学生归纳出:只满足其中一个条件的直线不是圆的切线;因此利用切线的判定定理时,两个条件是缺一不可的;把定理中的“半径”改为“直径”结论也成立。提问:判断一条直线是圆的切线,共有几种方法?(学生讨论后,请学生代表陈述,再用多媒体显示)方法1:与圆有唯一公共点的直线是圆的切线。方法...