1隧道塌方预防技术要求及处理措施案例展示2前言随着我国铁路路网的完善,建设标准的提高,特别是高速铁路和客运专线的大量修建,隧道建设规模和技术水平也踏上了一个新的台阶;目前在建铁路隧道6600公里,已规划建设隧道7600公里,隧道呈现“三多”特点(隧道数量多、长大隧道多、风险隧道多)。其中隧道占有相当大的比例。隧道施工,除地质条件差,还会遇到断面大、埋深浅、下穿公路或建筑物等情况,从而使施工更加复杂,难度更大。目前,由于设计深度不足,技术措施不合理、施工方法不当、施工工艺不到位、现场管理薄弱等环节的诸多问题,隧道坍方、作业人员伤亡等事故时有发生,隧道建设的安全现状无法与当前的形势相适应。4如何提高隧道设计施工水平,预防变形和坍方,确保施工安全,其核心是抓住隧道工程特点,认清隧道潜在安全风险源,从设计源头采取相应技术措施,落实好“三超前、四到位、一强化”施工技术关键环节。5目录1地质特征与工程特点2隧道潜在安全风险源3隧道“新奥法”设计原理4变形控制技术5隧道设计的有关要求6隧道变形、坍方事故案例7隧道施工的有关要求61隧道地质特征与工程特点71.1主要工程地质特征一般是指岩质软弱、承载力低、节理裂隙发育、结构破碎的围岩,工程地质特征有:(1)岩体破碎松散、粘结力差:一般为土层、岩体全风化层、挤压破碎带等构成的围岩,由于结构破碎松散,岩体间的粘结力差,开挖洞室后,仅靠颗粒间的摩擦效应和微弱胶结作用成拱,这类岩体极不稳定,尤其是在浅埋地段容易发生坍塌冒顶。8(2)围岩强度低、遇水易软化:一般以页岩、泥岩、片岩、炭质岩、千枚岩等为代表的软质岩地层,由于其强度低、稳定性差,开挖暴露后易风化、遇水易软化,尤其是深埋地段受高应力影响容易发生塑性变形,造成洞室内挤。9(3)岩体结构面软弱、易滑塌:主要是存在于受结构面切割影响严重的块状岩体中,由于结构面的粘结强度较低,开挖后周边岩体极易沿结构面产生松弛、滑移和坠落等变形破坏现象。101.2的变形与破坏特征的工程地质性质决定了它在隧道工程中的变形特征,即开挖后自稳能力差,表现出“自稳时间短、易坍塌”的特征。由于隧道的开挖,使先前支撑隧道洞身围岩被移走,洞壁临空;造成围岩应力进行重新调整,围岩与洞壁均向隧道净空方向变形。这种变形由三部分组成:一是,隧道正前方掌子面的水平位移,表现为掌子面的水平鼓出;二是,掌子面前方围岩下沉,浅埋隧道表现为地表下沉,形成沉降槽;图掌子面鼓出/地表沉降槽三是,刚开挖的隧道洞壁出现收敛变形,表现为拱顶下沉和边墙内移;图拱顶下沉和边墙内移若这种变形不进行控制,则可能发生隧道坍方。常见的隧道坍方类型可以归纳为两类:一是掌子面水平变形过大,发生掌子面挤出坍方;另一类是支护下沉过大,出现整体失稳坍方。图掌子面挤出坍方图整体失稳坍方当隧道上部覆土较浅时,隧道内的变形可能发展到地表,引起地表变形开裂,甚至出现坍塌冒顶的情况。这种坍方对隧道工程的建设和环境的危害性极大。整体失稳坍方工程实例洞顶地表陷坑151.3隧道工程特点强度低、自稳能力差,隧道开挖后地应力重新分布,使隧道周边产生较大的松动圈。一旦工程措施(包括设计措施)和施工方法不当,将极易发生初期支护变形侵限和隧道坍方等工程事故。因此,隧道施工的核心是“控制变形、防止坍方”。162隧道潜在安全风险源针对隧道的支护变形、塌方等风险,从地质角度进行分析总结,其潜在安全风险源主要有6种情况:(1)浅埋、偏压浅埋地段,隧道施工时拱部一般难于成拱,在未采取足够措施前,浅埋隧道易发生局部塌方;偏压地段,隧道支护结构将承受显著的不对称荷载,施工期间易造成初期支护纵向开裂或错台,变形过大甚至塌方。图地形引起的偏压图地质引起的偏压(2)土质隧道土质隧道强度低、自稳性差,与岩石隧道相比要承受更大的荷载,若初期支护强度不足,将导致变形大、严重时会出现局部坍塌等安全风险。土质隧道塌方冒顶及洞内松散坍体(3)大埋深软岩隧道在大埋深软岩地段,一般存在较高的地应力,由于软岩抗压强度低,开挖过程中洞壁岩体剥离,位移极为显著,变形持续时间长,隧底常出现隆起现象。...