(1)当b2-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2=;(2)当b2-4ac=0时,方程①的右端为零,因此,原方程有两个等的实数根x1=x2=-;(3)当b2-4ac<0时,方程①的右端是一个负数,而方程①的左边一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax2+bx+c=0(a≠0)的根的情况可以由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax2+bx+c=0(a≠0),有(1)当Δ>0时,方程有两个不相等的实数根x1,2=;(2)当Δ=0时,方程有两个相等的实数根x1=x2=-;(3)当Δ<0时,方程没有实数根.例1判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x+3=0;(2)x2-ax-1=0;(3)x2-ax+(a-1)=0;(4)x2-2x+a=0.练习:1.解下列方程:(1)(2)(3)(4)解关于的方程:(九)根与系数的关系(韦达定理)(1)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根,,