电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数图象学案VIP免费

函数图象学案_第1页
1/3
函数图象学案_第2页
2/3
函数图象学案_第3页
3/3
函数的图象教学目标:1.结合具体实例,了解的实际意义,借助函数的图象,并研究参数,,对函数图象变化的影响.2.会用”五点法”画出函数的简图3.能由正弦曲线通过平移、伸缩变换得到的图象,并在这个过程中认识到函数与的联系.自主学习1用“五点”作图法作函数y=sinx简图的基本步骤__________________________________________________________2求下列三角函数的最小正周期及最大值教学过程:例1:在同一坐标系内,作函数和函数的图象,并指出它们的图象与函数y=sinx图象的关系。小结1:函数y=sin(x+φ),(φ≠0)的图象可以看作是把y=sinx的图象上所有的点_____________________________________________________________例2:函数和函数的图象与函数y=sinx图象有何关系?1小结2:一般地,函数y=Asinx(A>0且A≠1)的图象可以看作是把y=sinx的图象上所有点__________________________________例3函数和图象与y=sinx的图象有什么关系呢?小结3:一般地,函数y=sinωx(ω>0且ω≠1)的图象,可以看作是把y=sinx的图象上所有点________________________________________________思考:函数y=sin2x和y=sin(2x+1)图象有何关系?例4:若函数表示一个振动量:(1)求这个振动的振幅,周期,初相(2)不用计算机和图形计算器,画出该函数的简图总结:1.作正弦型函数y=Asin(wx+j)的图象的方法有:________________________2、函数y=sinx的图象与函数y=Asin(wx+j)的图象间的变换关系。23

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

函数图象学案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部