电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 13算法案例课件 新人教A版必修3 课件VIP免费

高中数学 13算法案例课件 新人教A版必修3 课件_第1页
1/34
高中数学 13算法案例课件 新人教A版必修3 课件_第2页
2/34
高中数学 13算法案例课件 新人教A版必修3 课件_第3页
3/34
算法案例(第一课时)1、求两个正整数的最大公约数(1)求25和35的最大公约数(2)求225和135的最大公约数2、求8251和6105的最大公约数25(1)55357所以,25和35的最大公约数为5所以,225和135的最大公约数为45辗转相除法(欧几里得算法)观察用辗转相除法求8251和6105的最大公约数的过程第一步用两数中较大的数除以较小的数,求得商和余数8251=6105×1+2146结论:8251和6105的公约数就是6105和2146的公约数,求8251和6105的最大公约数,只要求出6105和2146的公约数就可以了。第二步对6105和2146重复第一步的做法6105=2146×2+1813同理6105和2146的最大公约数也是2146和1813的最大公约数。完整的过程8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0例2用辗转相除法求225和135的最大公约数225=135×1+90135=90×1+4590=45×2显然37是148和37的最大公约数,也就是8251和6105的最大公约数显然45是90和45的最大公约数,也就是225和135的最大公约数思考1:从上面的两个例子可以看出计算的规律是什么?S1:用大数除以小数S2:除数变成被除数,余数变成除数S3:重复S1,直到余数为0辗转相除法是一个反复执行直到余数等于0停止的步骤,这实际上是一个循环结构。8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0m=n×q+r用程序框图表示出右边的过程r=mMODnm=nn=rr=0?是否INPUTm,nDOr=mmodnm=nn=rLOOPUNTILr=0PRINTmEnd《九章算术》——更相减损术算理:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之。第一步:任意给定两个正整数;判断他们是否都是偶数。若是,则用2约简;若不是,则执行第二步。第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止,则这个等数或这个等数与约简的数的乘积就是所求的最大公约数。例3用更相减损术求225与135的最大公约数解:由于两数不是偶数,把225和135以大数减小数,并辗转相减225-135=90135-90=4590-45=45所以,225和135的最大公约数等于45INPUTa,bWHILEa<>bIFa>bTHENa=a-bELSEb=b-aENDIFWENDPRINTaEND《九章算术》——更相减损术的算法程序语句:练习:用辗转相除法求294与84的最大公约数,再用更相减损术验证。思考:求三个数:168,54,264的最大公约数。算法案例(第二课时)计算多项式f(x)=x5+x4+x3+x2+x+1当x=5的值算法1:f(x)=x5+x4+x3+x2+x+1=x×x×x×x×x+x×x×x×x+x×x×x+x×x+x+1所以f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906算法2:f(5)=55+54+53+52+5+1=((((5+1)×5+1)×5+1)×5+1)×5+1f(x)=x5+x4+x3+x2+x+1=((((x+1)x+1)x+1)x+1)x+1《数书九章》——秦九韶算法0111)(axaxaxaxfnnnn设)(xf是一个n次的多项式对该多项式按下面的方式进行改写:0111)(axaxaxaxfnnnn01211)(axaxaxannnn012312))((axaxaxaxannnn0121)))((axaxaxaxannn这样改写的目的是什么?简化计算的次数(尤其是乘法的次数)。0111)(axaxaxaxfnnnn设)(xf是一个n次的多项式对该多项式按下面的方式进行改写:0111)(axaxaxaxfnnnn01211)(axaxaxannnn012312))((axaxaxaxannnn0121)))((axaxaxaxannn0121)))(()(axaxaxaxaxfnnn要求多项式的值,应该先算最内层的一次多项式的值,即11nnaxav然后,由内到外逐层计算一次多项式的值,即212naxvv323naxvv01axvvnn最后的一项是什么?这种将求一个n次多项式f(x)的值转化成求n个一次多项式的值的方法,称为秦九韶算法。nav0knkkaxvv1例2已知一个五次多项式为8.07.16.25.325)(2345xxxxxxf用秦九韶算法求这个多项...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 13算法案例课件 新人教A版必修3 课件

您可能关注的文档

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部