第三章数列第讲考点搜索●数列的概念●数列通项公式的求解方法●用函数的观点理解数列高考猜想以递推数列、新情境下的数列为载体,重点考查数列的通项及性质,是近年来高考的热点,也是考题难点之所在.一、数列的定义1.按①排成的一列数叫做数列,其一般形式为a1,a2,…,an,…,简记为{an}.2.数列是一种特殊的函数,其特殊性表现在它的定义域是正整数集或正整数集的子集,因此它的图象是②.一定顺序一群孤立的点二、数列的通项公式一个数列{an}的第n项an与项数n之间的函数关系,如果可以用一个公式an=f(n)来表示,我们就把这个公式叫做这个数列的通项公式.三、数列的分类1.按照项数是有限还是无限来分:有穷数列、无穷数列.2.按照项与项之间的大小关系来分:递增数列、递减数列、摆动数列和常数列.递增数列与递减数列统称为单调数列.3.按照任何一项的绝对值是否都不大于某一正数来分:有界数列、无界数列.四、数列前n项和Sn与an的关系:1.Sn=③(用an表示).2.an=④(用Sn表示).Sn(n=1)Sn-Sn-1(n≥2)a1+a2+a3+…+an1.已知数列{an}、{bn}的通项公式分别是:an=an+2,bn=bn+1(a,b是常数),且a>b.那么两个数列中序号与数值均相同的项的个数是()A.0个B.1个C.2个D.无穷多个an=bnan+2=bn+1(a-b)n=-1.由于a>b,nN*.∈所以(a-b)n=-1无解.故选A.A2.已知数列{an}中,a1=1,a2=3,则a5等于()A.B.C.4D.5a1=1,a2=3,an=an-1+(n≥3)()nnnaana1213,5512133na21aaaaaa324312111343.aaa54315512A3.已知数列{an}的前n项和Sn=n2-9n,第k项满足5