3.2古典概型3.2.1古典概型1.了解基本事件的定义,能写出一次试验所出现的基本事件.2.理解古典概型的两个基本特征和计算公式,会判断古典概型.3.会求古典概型的概率.1.基本事件(1)定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件,试验中其他的事件(除不可能事件)都可以用基本事件来表示.(2)特点:一是任何两个基本事件是互斥的;二是任何事件(除不可能事件)都可以表示成基本事件的和.一次试验中,只能出现一种结果,即产生一个基本事件;所有基本事件的和事件是必然事件.【做一做1】抛掷一枚骰子,下列不是基本事件的是()A.向上的点数是奇数B.向上的点数是3C.向上的点数是4D.向上的点数是6解析:向上的点数是奇数包含三个基本事件:向上的点数是1,向上的点数是3,向上的点数是5,则A项不是基本事件,B,C,D项均是基本事件.答案:A2.古典概型(1)定义:如果一个概率模型满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.那么这样的概率模型称为古典概率模型,简称古典概型.(2)计算公式:对于古典概型,任何事件A的概率为P(A)=A包含的基本事件的个数基本事件的总数.如果一次试验中可能出现的结果有n(n为确定的数)个,而且所有结果出现的可能性相等,这就是古典概型,并且每一个基本事件的概率都是1n.【做一做2】从1,2,3中任取两个数字,设取出的数字中含有3为事件A,则P(A)=.解析:从1,2,3中任取两个数字有(1,2),(1,3),(2,3),共3个基本事件;事件A包含(1,3),(2,3),共2个基本事件,则P(A)=23.答案:23计算古典概型中基本事件的总数剖析:计算古典概型中基本事件的总数时,通常利用枚举法.枚举法就是把所有的基本事件一一列举出来,再逐个数出.例如,把从4个球中任取两个看成一次试验,那么一次试验共有多少个基本事件?为了表述方便,对这四个球编号为1,2,3,4.把每次取出的两个球的号码写在一个括号内,则有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),所以共有6个基本事件.用数对来表示试验结果是非常重要的表示方法,这种表示方法要注意数对中的两个数是否有顺序限制.有时还可以画直角坐标系,列表格,画树状图等来列举.把从n个元素中任取出2个元素看成一次试验,如果这2个元素没有顺序,那么这次试验共有n(n-1)2个基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)个基本事件.可以作为结论记住(不要求证明),在选择题或填空题中可以直接应用.题型一判断古典概型【例题1】(1)袋中有除颜色外其他均相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.有多少种不同的摸法?如果把每个球的编号看作一个基本事件,是否为古典概型?(2)将一粒豆子随机撒在一张桌子的桌面上,将豆子所落的位置看作一个基本事件,是否为古典概型?分析:确定各概率模型是否满足古典概型的特点.解:(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球除颜色外其他均相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由豆子落在桌面上的位置有无数个,即有无数个基本事件,所以以豆子所落的位置为基本事件的概率模型不是古典概型.反思:依据古典概型的有限性和等可能性来判断,同时满足这两个特征的试验才是古典概型.题型二计算古典概型下的概率【例题2】袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率;(3)求至少摸出1个黑球的概率.分析:(1)可以利用初中学过的树状图写出;(2)找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;(3)找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.解:(1)用树状图表示所有的结果为所以所有不同的结果是ab,ac,ad,ae,bc,bd,be,cd,ce,de.(2)记“恰好摸出1个黑球和1个红球”为事件A,则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,所以P(A)=610=0.6,即恰好摸出1个黑球和1个红球的概率为0.6.(3)记“至少摸出1个黑球”为事件B,则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,所以P(B)=710=0.7,即至少摸出1...