1 1 2 .3 .1 等腰三角形教案设计 【教学目标】 1.知识与能力 理解并掌握等腰三角形的相关定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题. 2.过程与方法 在探索等腰三角形的性质的过程中体会知识间的关系,感受数学与生活的联系. 3.情感、态度与价值观 培养学生分析解决问题的能力,使学生养成良好的学习习惯. 【教学重点】 理解并掌握等腰三角形的相关定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题. 【教学难点】 等腰三角形性质的应用. 【教学方法】 创设情境-主体探究-合作交流-应用提高. 【教学过程】 一、 创设问题情境,激发学生兴趣,引出本节内容 活动1 如图(1 ),把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特征?你能画出具有这种特征的三角形吗? 2 DCBA 图(1) 学生活动设计: 学生动手操作,从剪出的图形观察△ABC 的特点,可以发现AB=AC. 教师活动设计: 让学生总结出等腰三角形的概念:有两边相等的三角形叫作等腰三角形,相等的两边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,底边和腰的夹角叫作底角.如图(2): CBA 图(2) △ABC 中,若AB=AC,则△ABC 是等腰三角形,AB、AC 是腰、BC 是底边、∠A 是顶角,∠B 和∠C 是底角. 二、自主探究、合作交流,探究等腰三角形的性质 活动2 把活动1 中剪出的△ABC 沿折痕 AD 对折,找出其中重合的线段,填入下表: 重合的线段 重合的角 AB=AC ∠BAD=∠CAD 3 从上表中你能发现等腰三角形具有什么性质吗? 学生活动设计: 学生经过观察,独立完成上表,从表中总结等腰三角形的性质. 教师活动设计: 引导学生归纳: 性质1 等腰三角形的两个底角相等(简写成“等边对等角”); 性质2 等腰三角形顶角平分线、底边上的中线、底边上的高互相重合. 活动3 你能证明上述两个性质吗? 问题:如图(3),已知△ABC 中,AB=AC,AD 是底边上的中线. (1) 求证:∠B=∠C; (2) AD 平分∠BAC,AD⊥BC. DCBA 图(3) 学生活动设计: 学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B=∠C,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可,于是可以证明△ABD 和△ACD 全等即可,根据条件利用“边边边”可以证明. 教师活动设计: 让学生充分讨论,根据所学的数...