电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

点集拓扑学课件VIP免费

点集拓扑学课件_第1页
1/48
点集拓扑学课件_第2页
2/48
点集拓扑学课件_第3页
3/48
点集拓扑学 合肥工业大学数学学院 预备知识 1 .点集拓扑的定义 《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。是数学与应用数学专业的主干课。点集拓扑学(Point Set Topology ),有时也被称为一般拓扑学(General Topology ),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学构造的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在 1940 年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。 2 .点集拓扑的起源 点集拓扑学产生于 19 世纪。G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。1906 年 M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。 3 .一些参考书籍 (1)《拓扑空间论》,高国士,科学出版社,2000 年 7 月第一版 (2)《基础拓扑讲义》,尤承业,北京大学出版社,1997 年 11 月第一版 (3)《一版拓扑学讲义》,彭良雪,科学出版社,2011 年 2 月第一版 第一章 集合论初步 在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。 这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。 1 .1 集合的基本概念 集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。 集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”)构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点或成员. 集合也可以没有元素.例如平方等于2 的有理数的集合,既大于1 又小于2 的整数的集合都没有任何元素,这种没有元素的集合我们称之为空集,记作 。此外,由一个元素构成的集合,我们常称为单点集...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

点集拓扑学课件

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部