下载后可任意编辑工业机器人的轨迹规划和控制S. R. Munasinghe and Masatoshi Nakamura1.简介工业机器人操作臂被用在各种应用中来实现快速、精确和高质量的生产。在抓取和放置操作,比如对部分的操作,聚合等,操作臂的末端只执行器必须在工作空间中两个特定的位置之间移动,而它在两者之间的路径却不被关怀。在路径追踪应用中,比如焊接,切削,喷涂等等,末端操作器必须在尽可能保持额定的速度下,在三维空间中遵循特定的轨迹运动。在后面的事例中,在对末端操作器的速度、节点加速度、轨迹有误等限订的情况下轨迹规划可能会很复杂。在没有对这些限制进行充分考虑的情况下进行轨迹规划,通常会得到很差的表现,比如轨迹超调,末端操作器偏离给定轨迹,过度的速度波动等。机器人在笛卡尔轨迹中的急弯处的的表现可能会更加恶化。到目前为止很多轨迹规划算法己经被提出,从笛卡尔轨迹规划到时间最优轨迹规划。然而,工业系统无法适应大多数的这些方法,有以下两点原因:(1)这些技术常常需要进行在目前机构中进行硬件的移动,生产过程必须被打断以进行系统重新配置,而这往往需要很长时间。(2)这些方法中很多通常只考虑到一种约束,而很少关注工业的需求和被请下载后可任意编辑求的实际的约束。因此,它们很难在工业中实现。在本文的观点中,我们提出了一种新的轨迹规划算法,考虑到了末端操作器的速度限制,节点加速度限制,应用中的容错度。这些是在工业应用中实际的约束。其他工业操作臂中的技术问题是他们的动力学延迟,这导致末端操作臂在轨迹中的拐角处出轨。为了补救这个问题,我们设计了前向补偿,稍稍改变了拐角处的路径,使得即使在延迟动力学环节存在的情况下依旧确保末端操作臂的实际跟踪轨迹。结合了前向补偿新的轨迹规划算法在控制系统中表现为单一的前向堵塞。它可以轻松地适应目前的工业操作臂系统,不冒风险,不花费时间重新配置硬件。轨迹规划算法可以为所有操作臂的节点产生位置,速度和加速度的大体规划。在大多数工业操作臂中,系统输入是节点的位置数据,这在工业中是作为被给定的数据而广为人知的。为了用笛卡尔轨迹规划来控制操作臂,Paul描述了同类型的转换是怎样可以被用来代表一系列操作臂连杆的位置和原点的。Shin et.al.的工作和我们的很相似,但是实现在工业控制系统中的应用是很困难的,因为它需要知道很多操作臂的连杆和节点的参数。在大多数工业操作比系统中,这些参量并不能被精确的获知。在我们之前的工...