我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 在力学上由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的关系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的连系。所以平衡方程与几何方程是两类完全相互独立的方程,它们之间还缺乏必要的联系,这种联系即应力和应变之间的关系。有了可变形材料应力和应变之间关系和力学参数及运动学参数即可分析具体的力学问题。由平衡方程和几何方程加上一组反映材料应力和应变之间关系的方程就可求解具体的力学问题。这样的一组方程即所谓的本构方程。讨论应力和应变之间的关系即可变为一定的材料建立合适的本构方程。 一. 典型应力-应变关系 图 1-1 典型应力-应变曲线 1) 弹性阶段(OC段) 该弹性阶段为初始弹性阶段 OC(严格讲应该为 CA’),包括:线性弹性分阶段 OA 段,非线性弹性阶段 AB 段和初始屈服阶段 BC 段。该阶段应力和应变满 足线性关系,比例常数即弹性模量或杨氏模量,记作:E,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。 2)塑性阶段(CDEF 段) CDE 段为强化阶段,在此阶段如图 1 中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。CDE 段的强化阶段在 E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限 (u ltimate strength ),并用σ b表示。超过强度极限后应变变大应力却下降, 直到最后试件断裂。这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。这一现象称为“颈缩”(necking )。此时,由于颈缩现象的出现,在 E点以后荷载开始下降,直至在颈缩部位试件断裂破坏。这种应力降低而应变增加的现象称为应变软化(简称为软化)。 该阶段应力和应变的关系:)( 。 3)卸载规律 如果应力没有超过屈服应力,即在弹性阶段 OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。在应力超过屈服应力后,如果在曲线上任一点 D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而...