2024 定州中考数学考点归纳 集合论在 20 世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。今日我在这给大家整理了一些定州中考数学考点归纳,我们一起来看看吧! 定州中考数学考点归纳 1.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积的问题”: 由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积,就会使动四边形的面积,而动三角形面积值的求法及抛物线上动点坐标求法与 7 相同。 2、“定四边形面积的求解”问题: 有两种常见解决的方案: 方案(一):连接一条对角线,分成两个三角形面积之和; 方案(二):过不在 x 轴或 y 轴上的四边形的一个顶点,向 x 轴(或 y 轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差) 3.“两个三角形相似”的问题: 4.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题: 首先弄清题中是否规定了哪个点为等腰三角形的顶点。(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。 中考数学考点归纳 1、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题: 这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有 3 条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。 进一步有: ① 若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否...