§3 弧度制(1 课时)教学目标:知识与技能(1)理解 1 弧度的角及弧度的定义;(2)掌握角度与弧度的换算公式;(3)熟练进行角度与弧度的换算;(4)理解角的集合与实数集 R 之间的一一对应关系;(5)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。过程与方法通过单位圆中的圆心角引入弧度的概念;比较两种度量角的方法探究角度制与弧度制之间的互化;应用在特殊角的角度制与弧度制的互化,帮助学生理解掌握;以针对性的例题和习题使学生掌握弧长公式和扇形的面积公式;通过自主学习和合作学习,树立学生正确的学习态度。情感态度与价值观通过弧度制的学习,使学生认识到角度制与弧度制都是度量角制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下,角的加、减运算可以像十进制一样进行,而不需要进行角度制与十进制之间的互化,化简了六十进制给角的加、减运算带来的诸多不便,体现了弧度制的简捷美;通过弧度制与角度制的比较,使学生认识到引入弧度制的优越性,激发学生的学习兴趣和求知欲望,养成良好的学习品质。二、教学重、难点 重点: 理解弧度制的意义,正确进行弧度与角度的换算;弧长和面积公式及应用。难点: 弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系。三、学法与教学用具在初中,我们非常熟悉角度制表示角,但在进行角的运算时,运用六十进制出现了很不习惯的问题,与我们常用的十进制不一样,正因为这样,所以有必要引入弧度制;在学习中,通过自主学习的形式,让学生感受弧度制的优越性,在类比中理解掌握弧度制。教学用具:多媒体、三角板四、教学思路 【创设情境,揭示课题】 在初中几何里我们学过角的度量,当时是用度做单位来度量角的.我们把周角的 3601规定为 1 度的角,而把这种用度作单位来度量角的单位制叫做角度制.但在数学和其他科学中我们还经常用到另一种度量角的单位制——弧度制。下面我们就来学习弧度制的有关概念.(板书课题)弧度制的单位是 rad,读作弧度.【探究新知】1.1 弧度的角的定义.(板书)我们把长度等于半径长的弧所对的圆心角,叫做 1 弧度的角(打开课件).如图 1—14(见教材),弧 AB 的长等于半径 r,则弧 AB 所对的圆心角就是 1 弧度的角,弧度的单位记作 rad。在图 1(课件)中,圆心角∠AOC 所对的弧长 l=2r,那么∠AOC 的弧度数就是 2rad;圆心角∠AOD所对的弧长 l= 21r,那么∠AOC 的弧度...