[练案65]第四讲随机事件的概率A组基础巩固一、单选题1.(2019·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(D)A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”[解析]A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.2.(2019·江西模拟)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是(C)A.B.C.D.[解析]从A、B中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所求概率P==,选C.3.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为(A)A.B.C.D.[解析]由题意得,甲不输的概率为+=.4.(2019·山东滨州)若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P(m,n)落在直线x+y=4下方的概率为(C)A.B.C.D.[解析]试验是连续掷两次骰子,故共包含6×6=36个基本事件.事件“点P(m,n)落在x+y=4下方”,包含(1,1),(1,2),(2,1)共3个基本事件,故P==.5.(2020·安徽模拟)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为(D)A.B.C.D.[解析]事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,从五位学生中选三人的基本事件个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率P=1-=.6.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为(B)A.12B.18C.24D.32[解析]设女同学有x人,则该班到会的共有(2x-6)人,所以=,得x=12,故该班参加聚会的同学有18人.故选B.7.(2019·赤峰模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是(D)A.B.C.D.[解析]至少一次正面朝上的对立事件的概率为,故P=1-=.8.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于(B)A.B.C.D.[解析]P==.二、多选题9.若干个人站成排,其中不是互斥事件的是(BCD)A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”[解析]排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B、C、D中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥,故选BCD.10.不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是(ABD)A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色[解析]从6张卡片中一次取出2张卡片的所有情况有“2张都为红色”“2张都为绿色”“2张都为蓝色”“1张红色1张绿色”“1张红色1张蓝色”“1张绿色1张蓝色”,在选项给出的四个事件中与“2张卡片都为红色”互斥而非对立的事件有“2张卡片都不是红色”“2张卡片恰有一张红色”“2张卡片都为绿色”,其中“2张卡片至少有一张红色”包含事件“2张卡片都为红色”,二者并非互斥事件.故选ABD.11.(原创)下列结论不正确的是(ABCD)A.任意事件A发生的概率P(A)满足0