第九章圆锥曲线一.基础题组1.【2005天津,文6】设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为()(A)2(B)(C)(D)【答案】C2.【2006天津,文8】椭圆的中心为点它的一个焦点为相应于焦点F的准线方程为则这个椭圆的方程是()(A)(B)(C)(D)【答案】D【解析】椭圆的中心为点它的一个焦点为∴半焦距,相应于焦点F的准线方程为∴,,则这个椭圆的方程是,选D.3.【2007天津,文7】设双曲线的离心率为,且它的一条准线与抛物线的准线重合,则此双曲线的方程为()A.B.C.D.【答案】D4.【2008天津,文7】设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为(A)(B)(C)(D)【答案】B【解析】抛物线的焦点为,椭圆焦点在轴上,排除A、C,由排除D,选B.5.【2009天津,文4】设双曲线(a>0,b>0)的虚轴长为2,焦距为,则双曲线的渐近线方程为()A.B.y=±2xC.D.【答案】C【解析】由题意知:2b=2,,则可求得,则双曲线方程为:,故其渐近线方程为.6.【2010天津,文13】已知双曲线(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为__________.【答案】【解析】解析:由条件知双曲线的焦点为(±4,0),所以解得a=2,b=2,故双曲线方程为7.【2011天津,文6】已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A.B.C.D.【答案】B8.【2012天津,文11】已知双曲线C1:(a>0,b>0)与双曲线C2:有相同的渐近线,且C1的右焦点为F(,0),则a=__________,b=__________.【答案】12【解析】 C1与C2的渐近线相同,∴.又C1的右焦点为F(,0),∴,即a2+b2=5.∴a2=1,b2=4,∴a=1,b=2.9.【2013天津,文11】已知抛物线y2=8x的准线过双曲线(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为__________.答案【解析】抛物线y2=8x的准线为x=-2,则双曲线的一个焦点为(-2,0),即c=2,离心率e==2,故a=1,由a2+b2=c2得b2=3,所以双曲线的方程为.10.【2014天津,文6】已知双曲线的一条渐近线平行于直线双曲线的一个焦点在直线上,则双曲线的方程为()A.B.C.D.【答案】A考点:双曲线的渐近线11.【2015高考天津,文5】已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为()(A)(B)(C)(D)【答案】D【解析】由双曲线的渐近线与圆相切得,由,解得,故选D.【考点定位】圆与双曲线的性质及运算能力.12.【2016高考天津文数】已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为(A)(B)(C)(D)【答案】A【解析】试题分析:由题意,得又,所以所以双曲线的方程为,选A.【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).二.能力题组1.【2011天津,文18】18.(本小题满分13分)设椭圆的左、右焦点分别为,点满足.(Ⅰ)求椭圆的离心率;(Ⅱ)设直线与椭圆相交于A,B两点.若直线与圆相交于M,N两点,且|MN|=|AB|,求椭圆的方程.【答案】(1)(2)12.【2012天津,文19】已知椭圆a>b>0),点P(,)在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.【答案】(Ⅰ);(Ⅱ)【解析】解:(1)因为点P(,)在椭圆上,故,可得.于是,所以椭圆的离心率.由(1)知,故(1+k2)2=k2+4,即5k4-22k2-15=0,可得k2=5.所以直线OQ的斜率.3.【2013天津,文18】设椭圆(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为...