专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)cbxaxybkxy2一般形式的定义域:x∈R(2)xky分式形式的定义域:x≠0(3)xy根式的形式定义域:x≥0(4)xyalog对数形式的定义域:x>0二、函数的性质1、函数的单调性当21xx时,恒有)()(21xfxf,)(xf在21xx,所在的区间上是增加的。当21xx时,恒有)()(21xfxf,)(xf在21xx,所在的区间上是减少的。2、函数的奇偶性定义:设函数)(xfy的定义区间D关于坐标原点对称(即若Dx,则有Dx)(1)偶函数)(xf——Dx,恒有)()(xfxf。(2)奇函数)(xf——Dx,恒有)()(xfxf。三、基本初等函数1、常数函数:cy,定义域是),(,图形是一条平行于x轴的直线。2、幂函数:uxy,(u是常数)。它的定义域随着u的不同而不同。图形过原点。3、指数函数定义:xaxfy)(,(a是常数且0a,1a).图形过(0,1)点。4、对数函数定义:xxfyalog)(,(a是常数且0a,1a)。图形过(1,0)点。5、三角函数(1)正弦函数:xysin2T,),()(fD,]1,1[)(Df。(2)余弦函数:xycos.2T,),()(fD,]1,1[)(Df。(3)正切函数:xytan.T,},2)12(,|{)(ZRkkxxxfD,),()(Df.(4)余切函数:xycot.T,},,|{)(ZRkkxxxfD,),()(Df.5、反三角函数(1)反正弦函数:xysinarc,]1,1[)(fD,]2,2[)(Df。(2)反余弦函数:xyarccos,]1,1[)(fD,],0[)(Df。(3)反正切函数:xyarctan,),()(fD,)2,2()(Df。(4)反余切函数:xyarccot,),()(fD,),0()(Df。极限一、求极限的方法1、代入法代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。2、传统求极限的方法(1)利用极限的四则运算法则求极限。(2)利用等价无穷小量代换求极限。(3)利用两个重要极限求极限。(4)利用罗比达法则就极限。二、函数极限的四则运算法则设Auxlim,Bvxlim,则(1)BAvuvuxxxlimlim)(lim(2)ABvuvuxxxlimlim)(lim.推论(a)vCvCxxlim)(lim,(C为常数)。(b)nxnxuu)lim(lim(3)BAvuvuxxxlimlimlim,(0B).(4)设)(xP为多项式nnnaxaxaxP110)(,则)()(lim00xPxPxx(5)设)(),(xQxP均为多项式,且0)(xQ,则)()()()(lim000xQxPxQxPxx三、等价无穷小常用的等价无穷小量代换有:当0x时,xx~sin,xx~tan,xx~arctan,xx~arcsin,xx~)1ln(,xex~1,221~cos1xx。对这些等价无穷小量的代换,应该更深一层地理解为:当0□时,□~□sin,其余类似。四、两个重要极限重要极限I1sinlim0xxx。它可以用下面更直观的结构式表示:1□□sinlim0□重要极限IIexxx11lim。其结构可以表示为:e□□□11lim八、洛必达(L’Hospital)法则“00”型和“”型不定式,存在有Axgxfxgxfaxax)()(lim)()(lim''(或)。一元函数微分学一、导数的定义设函数)(xfy在点0x的某一邻域内有定义,当自变量x在0x处取得增量x(点xx0仍在该邻域内)时,相应地函数y取得增量)()(00xfxxfy。如果当0x时,函数的增量y与自变量x的增量之比的极限0limxxy=0limxxxfxxf)()(00=)(0xf注意两个符号x和0x在题目中可能换成其他的符号表示。二、求导公式1、基本初等函数的导数公式(1)0)(C(C为常数)(2)1)(xx(为任意常数)(3)aaaxxln)()1,0(aa特殊情况xxee)((4)axexxaaln1log1)(log)1,0,0(aax,xx1)(ln(5)xxcos)(sin(6)xxsin)(cos(7)xx2'cos1)(tan(8)xx2'sin1)(cot(9)2'11)(arcsinxx)11(x(10))11(11)(arccos2'xxx(11)2'11)(arctanxx(12)2'11)cot(xxarc2、导数的四则运算公式(1))()(])()([xvxuxvxu(2))()()()(])()([xvxuxvxuxvxu(3)ukku][(k为常数)(4))()()()()()()(2xvxvxuxvxuxvxu3、复合函数求导公式:设)(ufy,)(xu,且)(uf及)(x都可导,则复合函数)]([xfy的导数为)().('xufdxdududydxdy。三、导数的应用1、函数的单调性0)('xf则)(xf在),(ba内严格单调增加。0)('xf则)(xf在),(ba内严格单调减少。2、函数的极值0)('xf的点——函数)(xf的驻点。设为0x(1)若0xx时,0)('xf;0xx时,0)('xf,则)(0xf为)(xf的极大值点。(2)若0xx时,0)('xf;0xx时,0)('xf,则)(0xf为)(xf的极小值点。(3)如果)('xf在0x的两侧的符号相同,那么)(0xf不是极值点。3、曲线的凹凸性0)(''xf,则曲...