课案(教师用)第六章平面直角坐标系复习课(复习课)【理论支持】义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体。《数学课程标准》指出:对学生数学学习的评价,既要关注学生学习的结果,更要关注学生在学习过程中的变化和发展;既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度。心理学认为:认知从感知开始,感知是认知的门户,是一切知识的来源。在课堂教学中,让学生人人参与、积极动手动脑、合作交流的探究活动,能激发学生学习数学的兴趣,对提高学生的数学素养和数学意识也是十分有意义的。斯滕伯格认为,成功智力包括分析性智力,创造性智力和实践性智力三个方面。分析性智力用来解决问题和判定思维成果的质量;创造性智力用来形成好的问题和想法;实践性智力可将思想及其分析结果以一种行之有效的方式加以实施。基于这一理论,要求教师在课堂教学中注重培养学生的分析性、创造性和实践性能力。分析性能力的培养是以问题解决和决策能力为核心,通过问题解决的七个步骤:明确问题、界定问题、分配资源、表征信息、制定策略、问题解决的监控和评估,来发展学生的分析性能力;创造性能力是以斯滕伯格的创造力投资理论为出发点,帮助教师教会学生从问题解决到形成自己的观点,产生新想法并学会推销自己的思想等,从而提高学生的创造性能力;实践性能力的培养多与相关情境的常识应用有关,实践性思维始于具体情境下所遇到的问题,通过师生共同讨论,教师帮助学生克服困难或回避障碍,锻炼和提高学生的实践思维能力。教师要根据不同的课型,采用不同的教学策略发展学生的分析性、创造性和实践性能力。教师也可通过布置任务或课题,拓展学生学习的时空范围,使课前、课中、课外的学习活动成为课堂教学的延伸。“平面直角坐标系”这一章对七年级学生来说是全新的知识。这一部分知识很重要。“平面直角坐标系”是图形与数量之间的桥梁。有了它,我们即可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题,它是解决数学问题的一个重要工具,利用它可以使很多数学问题变得直观而简明。教学对象分析:1.七年级学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意。2.七年级学生的概括能力较弱,推理能力还有待发展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知。3.七年级学生已经具备了一定的学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究。总之,通过本节课的研究,旨在让学生体会到数学与实际生活的密切联系,培养学生运用数学知识解决问题的能力。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,体验到数、符号和图形是有效地描述现实世界的重要手段与解决实际问题的重要工具。【教学目标】【教学重难点】在平面直角坐标系中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的知识技能1、能利用有序数对来表示点的位置;2、会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标.数学思考经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识解决问题培养学生综合运用平面直角坐标系的知识解决实际问题的能力情感态度明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想.坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点.【课时安排】一课时【教学设计】课前延伸一、回顾与思考及答案1.为什么要学习平面直角坐标系?2.在日常生活中,我们可以用有序实数对来描述物体的位...