电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

平面向量的内积教案VIP免费

平面向量的内积教案_第1页
1/6
平面向量的内积教案_第2页
2/6
平面向量的内积教案_第3页
3/6
公开课教案高场职业中学阳红秀授课内容:《平面向量的内积》授课班级:14学前教育2班授课类型:新授课授课时间:2015年1月14日上午第三节课时数:1课时【教学目标】知识目标:(1)了解平面向量内积的概念及其几何意义.(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.【教学重点】平面向量数量积的概念及计算公式.【教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角.【教学设计】教材从某人拉小车做功出发,引入两个向量内积的概念.需要强调力与位移都是向量,而功是数量.因此,向量的内积又叫做数量积.在讲述向量内积时要注意:(1)向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定;(2)向量数量积的正确书写方法是用实心圆点连接两个向量.教材中利用定义得到内积的性质后面的学习中会经常遇到,其中:(1)当=0时,a·b=|a||b|;当=时,a·b=-|a||b|.可以记忆为:两个共线向量,方向相同时内积为这两个向量模的积;方向相反时内积为这两个向量模的积的相反数.(2)|a|=显示出向量与向量的模的关系,是得到利用向量的坐标计算向量模的公式的基础;(3)cos=,是得到利用两个向量的坐标计算两个向量所成角的公式的基础;(4)“a·b=0ab”经常用来研究向量垂直问题,是推出两个向量内积坐标表示的重要基础.【教学备品】教学课件.【课时安排】2课时.(80分钟)【教学过程】*揭示课题7.3平面向量的内积*创设情境兴趣导入如图7-21所示,水平地面上有一辆车,某人用100N的力,朝着与水平线成角的方向拉小车,使小车前进了100m.那么,这个人做了多少功?动脑思考探索新知【新知识】我们知道,这个人做功等于力与在力的方向上移动的距离的乘积.如图7-22所示,设水平方向的单位向量为i,垂直方向的单位向量为j,则i+yj,即力F是水平方向的力与垂直方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s,即W=|F|cos·|s|=100×·10=500(J)这里,力F与位移s都是向量,而功W是一个数量,它等于由两个向量F,s的模及它们的夹角的余弦的乘积,W叫做向量F与向量s的内积,它是一个数量,又叫做数量积.如图7-23,设有两个非零向量a,b,作=a,=Fs图7—2130OOxijF(x,y)yBAO图7-23abb,由射线OA与OB所形成的角叫做向量a与向量b的夹角,记作.两个向量a,b的模与它们的夹角的余弦之积叫做向量a与向量b的内积,记作a·b,即a·b=|a||b|cos(7.10)上面的问题中,人所做的功可以记作W=F·s.由内积的定义可知a·0=0,0·a=0.由内积的定义可以得到下面几个重要结果:(1)当=0时,a·b=|a||b|;当=时,a·b=−|a||b|.(2)cos=.(3)当b=a时,有=0,所以a·a=|a||a|=|a|2,即|a|=.(4)当时,ab,因此,a·b=因此对非零向量a,b,有a·b=0ab.可以验证,向量的内积满足下面的运算律:(1)a·b=b·a.(2)()·b=(a·b)=a·(b).(3)(a+b)·c=a·c+b·c.注意:一般地,向量的内积不满足结合律,即a·(b·c)≠(a·b)·c.请结合实例进行验证.*巩固知识典型例题例1已知|a|=3,|b|=2,=,求a·b.解a·b=|a||b|cos=3×2×cos=3.例2已知|a|=|b|=,a·b=,求.解cos===−.由于0≤≤,所以=.*理论升华整体建构思考并回答下面的问题:平面向量内积的概念、几何意义?结论:两个向量a,b的模与它们的夹角的余弦之积叫做向量a与向量b的内积,记作a·b,即a·b=|a||b|cos(7.10)a·b的几何意义就是向量a的模与向量b在向量a上的投影的乘积.知识典型例题例3求下列向量的内积:(1)a=(2,−3),b=(1,3);运用知识强化练习1.已知|a|=7,|b|=4,a和b的夹角为,求a·b.2.已知a·a=9,求|a|.3.已知|a|=2,|b|=3,=,求(2a+b)·b.动脑思考探索新知设平面向量a=(x1,y1),b=(x2,y2),i,j分别为x轴,y轴上的单位向量,由于i⊥j,故i·j=0,又|i|=|j|=1,所以a·b=(x1i...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

平面向量的内积教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部