电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

一元二次方程根的判别式教案VIP免费

一元二次方程根的判别式教案_第1页
1/2
一元二次方程根的判别式教案_第2页
2/2
2.3一元二次方程根的判别式教学目标:1.理解一元二次方程根的判别式的作用,会用判别式判断一元二次方程是否有实数根和两个实数根是否相等.2.经历对判别符号△的讨论,体会分类讨论思想.重点难点:重点:会用判别式判断一元二次方程是否有实数根和两实数根是否相等.难点:正确计算判别式的值;分类讨论思想的应用.教学过程:一.预习导学学生自主预习教材P43-P45,完成下列各题.1.一元二次方程的一般形式是,其中a、b、c分别叫作.2.将一元二次方程ax2+bx+c=0(a≠0),配方得.3.用公式法解下列方程:(1)x2+3x-1=0;(2)x2-6x+9=0;(3)2y2-3y+4=0.(回顾旧知,激发学生的学习兴趣,为本节课学习根的判别式作铺垫.)二.探究展示(一)合作探究议一议:我们在运用公式法求解一元二次方程(ax2+bx+c=0(a≠0)时,总是要求b2-4ac≥0,这是为什么?将方程ax2+bx+c=0(a≠0)配方得到(x+ab2)2=2244aacb由于a≠0,所以acb42>0,因此我们不难发现:(1)当acb42>0时,2244aacb>0,由于正数有两个平方根,所以原方程有两个不相等的实数根,分别为x1=aacbb242,x2=aacbb242.(2)当acb42=0时,2244aacb=0.由于0的平方根为0,所以原方程有两个相等的实数根,两实数根为x1=x2=-ab2.(3)当acb42<0时,2244aacb<0.由于负数在实数范围内没有平方根,所以原方程没有实数根.归纳:由此可见,代数式acb42是考察一元二次方程根的情形的依据,因此我们把acb42叫作一元二次方程ax2+bx+c=0(a≠0)的根的判别式,记作“△”,即△=acb42(由旧知引入,使学生更容易理解根的判别式的意义.)(二)展示提升利用判别式判断下列方程根的情况:(1)3x2+4x-3=0;(2)4x2=12x-9;(3)7y=5(y2+1).(方程(1)△=52>0,因此方程有两个不相等的实数根;方程(2)△=0,因此方程有两个相等的实数根;方程(3)△=-51<0,因此方程没有实数根,通过此巩固训练,加强学生对根的判别式运用的熟练程度.三.知识梳理以”本节课我们学到了什么?”启发学生谈谈本节课的收获.acb42>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根acb42=0一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根;acb42<0一元二次方程ax2+bx+c=0(a≠0)没有实数根.四.当堂检测1.一元二次方程x2-x+1的根的情况为()(A)有两个相等的实数根(B)有两个不相等的实数根(C)只有一个实数根(D)没有实数根2.不解方程,利用判别式判断下列方程根的情况:(1)3x2-4x+1=0;(2)x(x+8)=16;(3)(x+2)(x-2)=1;(4)x+5=25.教学反思:本节课以学生为中心,老师为主导,注重学生良好的思维品质的培养,重视讨论、交流和合作,以及探究问题习惯的培养和养成,通过讨论交流,实现生生互助、师生互助,活跃课堂气氛,让学生自主体验学习.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

一元二次方程根的判别式教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部