一次函数的图象(第1课时)教学设计教学目标:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.4.理解一次函数的代数表达式与图象之间的一一对应关系.教学重点:初步了解作函数图象的一般步骤:列表、描点、连线.教学难点:理解一次函数的代数表达式与图象之间的一一对应关系.教学过程设计第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.第二环节:画正比例函数的图象内容:首先我们来学习什么是函数的图象?把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).例1请作出正比例函数y=2x的图象.解:列表:x…-2-1012…y=2x…-4-2024…描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连结起来,得到y=2x的图象.由例1我们发现:作一个函数的图象需要三个步骤:列表,描点,连线.目的:通过本环节的学习,让学生明确作一个函数图象的一般步骤,能做出一个函数的图象,同时感悟正比例函数图象是一条直线.效果:学生通过学习,掌握了作一个函数图象的一般方法,能作出一个函数的图象,同时感悟到正比例函数图象是一条直线.第三环节:动手操作,深化探索内容:做一做(1)作出正比例函数y=3x的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=3x.请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.(1)满足关系式y=3x的x,y所对应的点(x,y)都在正比例函数y=3x的图象上吗?(2)正比例函数y=3x的图象上的点(x,y)都满足关系式y=3x吗?(3)正比例函数y=kx的图象有什么特点?明晰由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.议一议既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.例2在同一直角坐标系内作出y=x,y=3x,y=-x,y=-4x的图象.解:列表x01y=x01y=3x03y=-x0-y=4x0-4过点(0,0)和(1,1)作直线,则这条直线就是y=x的图象.过点(0,0)和(1,3)作直线,则这条直线就是y=3x的图象.过点(0,0)和(1,-)作直线,则这条直线就是y=-x的图象.过点(0,0)和(1,-4)作直线,则这条直线就是y=-4x的图象.目的:做一做“作出这几个正比例函数的图象”,意在让学生进一步熟悉如何作一个正比例函数的图象,同时要求学生通过这几个函数的图象,分析正比例函数图象的性质,以及k的绝对值大小与直线倾斜程度的关系.效果:学生通过作出正比例函数的图象,明确了作函数图象的一般方法.在探究函数与图象的对应关系中加深了理解,并能很快地作出正比例函数的图象.议一议上述四个函数中,随着x的增大,y的值分别如何变化?在正比例函数y=kx中,当k>0时,图象在第一、三象限,y的值随着x值的...