电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

22.2二次函数与一元二次方程(1和2)VIP免费

22.2二次函数与一元二次方程(1和2)_第1页
1/24
22.2二次函数与一元二次方程(1和2)_第2页
2/24
22.2二次函数与一元二次方程(1和2)_第3页
3/24
(第一课时)回顾旧知2yaxbxc二次函数的一般式:(a≠0)______是自变量,____是____的函数。xyx当y=0时,ax²+bx+c=0ax²+bx+c=0这是什么方程?是我们已学习的“一元二次方程”一元二次方程根的情况与b²-4ac的关系?我们知道:代数式b2-4ac对于方程的根起着关键的作用.复习.2422,1aacbbx有两个不相等的实数根方程时当00,0422acbxaxacb:00,0422有两个相等的实数根方程时当acbxaxacb.22,1abx没有实数根方程时当00,0422acbxaxacb.4."".004222acbacbxaxacb即来表示用根的判别式的叫做方程我们把代数式一元二次方程根的情况与b²-4ac的关系以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?实际问题实际问题解:(1)当h=15时,20t–5t2=15t2-4t+3=0t1=1,t2=3当球飞行1s和3s时,它的高度为15m.1s3s15m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)当h=20时,20t–5t2=20t2-4t+4=0t1=t2=2当球飞行2s时,它的高度为20m.2s20m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)当h=20.5时,20t–5t2=20.5t2-4t+4.1=0因为(-4)2-4×4.1<0,所以方程无实根。球的飞行高度达不到20.5m.20.5m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(3)球的飞行高度能否达到20.5m?为什么?(4)当h=0时,20t–5t2=0t2-4t=0t1=0,t2=4当球飞行0s和4s时,它的高度为0m,即0s时,球从地面飞出,4s时球落回地面。0s4s0m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(4)球从飞出到落地要用多少时间?探究一:二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0有什么关系?1、一次函数y=kx+b与一元一次方程kx+b=0有什么关系?2、你能否用类比的方法猜想二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的关系?从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?一般地,当y取定值时,二次函数为一元二次方程。如:y=5时,则5=ax2+bx+c就是一个一元二次方程。为一个常数(定值)从以上可以看出,已知二次函数y的值为m,求相应自变量x的值,就是求相应一元二次方程的解.例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.1、二次函数y=x2+x-2,y=x2-6x+9,y=x2–x+1的图象如图所示。(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+x-2=0,x2-6x+9=0有几个根?验证一下一元二次方程x2–x+1=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?22yxx269yxx21yxx答:2个,1个,0个.,2,2.2无实数根个相等的根个根边观察边思考22yxx269yxx21yxx(3),二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?二次函数与x轴交点坐标相应方程的根22yxx269yxx21yxx(-2,0),(1,0)x1=-2,x2=1(3,0)x1=x2=3无交点无实根...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

22.2二次函数与一元二次方程(1和2)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部