1.1.1四种命题(不作要求)1.1.2充分条件和必要条件学习目标核心素养1.结合具体实例,理解充分条件、必要条件和充要条件的意义.(重点)2.结合具体命题,学会判断充分条件、必要条件、充要条件的方法.(重点、难点)3.培养辩证思维能力.通过充要条件的学习,培养逻辑推理素养.1.符号⇒与的含义命题真假“若p则q”为真“若p则q”为假表示方法p⇒qpq读法p推出qp不能推出q2.充分、必要条件的含义条件关系含义p是q的充分条件(q是p的必要条件)p⇒qp是q的充要条件p⇔qp是q的充分不必要条件p⇒q,且qpp是q的必要不充分条件pq,且q⇒pp是q的既不充分又不必要条件pq,且qp思考:(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否相同?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示](1)相同,都是p⇒q(2)等价1.“x>2”是“x2-3x+2>0”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[由x2-3x+2>0得x>2或x<1,故选A.]2.对于任意的实数a,b,c,在下列命题中,真命题是()A.“ac>bc”是“a>b”的必要条件B.“ac=bc”是“a=b”的必要条件C.“ac<bc”是“a<b”的充分条件D.“ac=bc”是“a=b”的充分条件B[若a=b,则ac=bc;若ac=bc,则a不一定等于b,故“ac=bc”是“a=b”的必要条件.]13.设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件D[本题采用特殊值法:当a=3,b=-1时,a+b>0,但ab<0,故不是充分条件;当a=-3,b=-1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分又不必要条件.]4.用“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”填空.(1)“a2+b2=0”是“a=b=0”的________条件.(2)两个三角形全等是这两个三角形相似的________条件.(3)“a2>0”是“a>0”的________条件.(4)“sinα>sinβ”是“α>β”的________条件.(1)充要(2)充分不必要(3)必要不充分(4)既不充分也不必要[(1)a2+b2=0成立时,当且仅当a=b=0.故应填“充要”.(2)因为两个三角形全等⇒两个三角形相似,但两个三角形相似D两个三角形全等,所以填“充分不必要”.(3)因为a2>0a>0,如(-2)2>0,但-2>0不成立;又a>0⇒a2>0,所以“a2>0”是“a>0”的必要不充分条件.(4)因为y=sinx在不同区间的单调性是不同的,故“sinα>sinβ”是“α>β”的既不充分也不必要条件.]充分条件、必要条件、充要条件的判断【例1】指出下列各题中,p是q的什么条件(在“充分不必要条件”“必要不充分条件”“充分必要条件”“既不充分也不必要条件”中选出一种作答).(1)在△ABC中,p:∠A>∠B,q:BC>AC;(2)对于实数x,y,p:x+y≠8,q:x≠2或y≠6;(3)p:(a-2)(a-3)=0,q:a=3;(4)p:a<b,q:<1.[思路探究]判断p⇒q与q⇒p是否成立,当p、q是否定形式,可判断綈q是綈p的什么条件.[解](1)在△ABC中,显然有∠A>∠B⇔BC>AC,所以p是q的充分必要条件.(2)因为x=2且y=6⇒x+y=8,即綈q⇒綈p,但綈p⇒綈q,所以p是q的充分不必要条件.(3)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要不充分条件.(4)由于a<b,当b<0时,>1;当b>0时,<1,故若a<b,不一定有<1;当a>0,b>0,<1时,可以推出a<b;当a<0,b<0,<1时,可以推出a>b.因此p是q的既不充分也不必要条件.2充分条件与必要条件的判断方法1.定义法2.等价法:将命题转化为另一个等价的又便于判断真假的命题.3.逆否法:这是等价法的一种特殊情况.若綈p⇒綈q,则p是q的必要条件,q是p的充分条件;若綈p⇒綈q,且綈q綈p,则p是q的必要不充分条件;若綈p⇔綈q,则p与q互为充要条件;若綈p綈q,且綈q綈p,则p是q的既不充分也不必要条件.1.(1)设a,b是实数,则“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件D[令a=1,b=-1,满足a>b,...