1.3.1利用导数判断函数的单调性学习目标核心素养1.理解导数与函数的单调性的关系.(易混点)2.掌握利用导数判断函数单调性的方法.(重点)3.会用导数求函数的单调区间.(重点、难点)1.通过利用导数判断函数单调性法则的学习,提升学生的数学抽象素养.2.借助判断函数单调性及求函数的单调区间,提升学生的逻辑推理、数学运算素养.用函数的导数判定函数单调性的法则(1)如果在(a,b)内,f′(x)>0,则f(x)在此区间是增函数,(a,b)为f(x)的单调增区间;(2)如果在(a,b)内,f′(x)<0,则f(x)在此区间是减函数,(a,b)为f(x)的单调减区间.1.判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.()(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.()(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.()[答案](1)×(2)×(3)√2.函数y=f(x)的图象如图所示,则()A.f′(3)>0B.f′(3)<0C.f′(3)=0D.f′(3)的正负不确定[解析]由图象可知,函数f(x)在(1,5)上单调递减,则在(1,5)上有f′(x)<0,故f′(3)<0.[答案]B3.已知函数f(x)=x2-x,则f(x)的单调递增区间为________.[解析] f′(x)=x-1,令f′(x)>0,解得x>1,故f(x)的单调递增区间是(1,+∞).[答案](1,+∞)单调性与导数的关系【例1】(1)函数y=f(x)的图象如图所示,给出以下说法:①函数y=f(x)的定义域是[-1,5];②函数y=f(x)的值域是(-∞,0]∪[2,4];③函数y=f(x)在定义域内是增函数;④函数y=f(x)在定义域内的导数f′(x)>0.其中正确的序号是()A.①②B.①③C.②③D.②④(2)设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为()[思路探究]研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.[解析](1)由图象可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图象可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.[答案](1)A(2)D1.利用导数判断函数的单调性比利用函数单调性的定义简单的多,只需判断导数在该区间内的正负即可.2.通过图象研究函数单调性的方法(1)观察原函数的图象重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图象重在找出导函数图象与x轴的交点,分析导数的正负.1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不正确的是()ABCD(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是()ABCD[解析](1)A,B,C均有可能;对于D,若C1为导函数,则y=f(x)应为增函数,不符合;若C2为导函数,则y=f(x)应为减函数,也不符合.(2)因为y=f(x)的导函数在区间[a,b]上是增函数,则从左到右函数f(x)图象上的点的切线斜率是递增的.[答案](1)D(2)A利用导数求函数的单调区间【例2】求函数f(x)=x+(a≠0)的单调区间.[思路探究]求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.[解]f(x)=x+的定义域是(-∞,0)∪(0,+∞),f′(x)=1-.当a>0时,令f′(x)=1->0,解得x>或x<-;令f′(x)=1-<0,解得-0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-)和(,+∞);单调递减区间为(-,0)和(0,).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域.2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.2.(1)函数f(x)=ex-ex,x∈R的单调递增区间为()A.(0,+∞)B.(...