1.2.3导数的四则运算法则学习目标核心素养1.熟记基本初等函数的导数公式,并能运用这些公式求基本初等函数的导数.(重点)2.掌握导数的运算法则,并能运用法则求复杂函数的导数.(难点)3.掌握复合函数的求导法则,会求复合函数的导数.(易混点)1.通过学习导数的四则运算法则,培养学生的数学运算素养.2.借助复合函数的求导法则的学习,提升学生的逻辑推理、数学抽象素养.一、导数的运算法则1.和差的导数[f(x)±g(x)]′=f′(x)±g′(x).2.积的导数(1)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);(2)[cf(x)]′=cf′(x).3.商的导数=,g(x)≠0.二、复合函数的概念及求导法则复合函数的概念一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).复合函数的求导法则复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为=·,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.判断(正确的打“√”,错误的打“×”)(1)若f′(x)=2x,则f(x)=x2.()(2)已知函数y=2sinx-cosx,则y′=2cosx+sinx.()(3)已知函数f(x)=(x+1)(x+2),则f′(x)=2x+1.()[解析](1)由f′(x)=2x,则f(x)=x2+c.(2)由y=2sinx-cosx,则y′=(2sinx)′-(cosx)′=2cosx+sinx.(3)由f(x)=(x+1)(x+2)=x2+3x+2,所以f′(x)=2x+3.[答案](1)×(2)√(3)×2.函数f(x)=xex的导数f′(x)=()A.ex(x+1)B.1+exC.x(1+ex)D.ex(x-1)[解析]f′(x)=x′ex+x(ex)′=ex+xex=ex(x+1),选A.[答案]A3.函数f(x)=sin(-x)的导函数f′(x)=________.[解析]f′(x)=[sin(-x)]′=cos(-x)(-x)′=-cosx.[答案]-cosx导数四则运算法则的应用【例1】求下列函数的导数.(1)y=x-2+x2;(2)y=3xex-2x+e;(3)y=;(4)y=x2-sincos.[解](1)y′=2x-2x-3.(2)y′=(ln3+1)·(3e)x-2xln2.(3)y′=.(4) y=x2-sincos=x2-sinx,∴y′=2x-cosx.1.解答此类问题时常因导数的四则运算法则不熟而失分.2.对一个函数求导时,要紧扣导数运算法则,联系基本初等函数的导数公式,当不易直接应用导数公式时,应先对函数进行化简(恒等变形),然后求导.这样可以减少运算量,优化解题过程.1.(1)设函数f(x)=x3+x2+tanθ,其中θ∈,则导数f′(1)的取值范围是()A.[-2,2]B.[,]C.[,2]D.[,2](2)已知f(x)=,若f′(x0)+f(x0)=0,则x0的值为________.[解析](1)f′(x)=sinθ·x2+cosθ·x,∴f′(1)=sinθ+cosθ=2sin, θ∈,∴sin∈,∴2sin∈[,2].(2) f′(x)==(x≠0).∴由f′(x0)+f(x0)=0,得+=0,解得x0=.[答案](1)D(2)复合函数的导数【例2】求下列函数的导数.(1)y=e2x+1;(2)y=;(3)y=5log2(1-x);(4)y=sin3x+sin3x.[思路探究]先分析函数是怎样复合而成的,找出中间变量,分层求导.[解](1)函数y=e2x+1可看作函数y=eu和u=2x+1的复合函数,∴y′x=y′u·ux′=(eu)′(2x+1)′=2eu=2e2x+1.(2)函数y=可看作函数y=u-3和u=2x-1的复合函数,∴y′x=y′u·ux′=(u-3)′(2x-1)′=-6u-4=-6(2x-1)-4=-.(3)函数y=5log2(1-x)可看作函数y=5log2u和u=1-x的复合函数,∴y′x=y′u·u′x=(5log2u)′·(1-x)′==.(4)函数y=sin3x可看作函数y=u3和u=sinx的复合函数,函数y=sin3x可看作函数y=sinv和v=3x的复合函数.∴y′x=(u3)′·(sinx)′+(sinv)′·(3x)′=3u2·cosx+3cosv=3sin2xcosx+3cos3x.1.解答此类问题常犯两个错误(1)不能正确区分所给函数是否为复合函数;(2)若是复合函数,不能正确判断它是由哪些基本初等函数复合而成.2.复合函数求导的步骤2.求下列函数的导数.(1)y=;(2)y=log2(2x2-1).[解](1)y====1+.设y=1+,u=1-x,则y′=yu′·ux′=(1+)′·(1-x)′=·(-1)=-.(2)设y=log2u,u=2x2-1,则y′=y′u·ux′=·4x=.导数法则的综合应用[探究问题]试说明复合函数y=(3x+2)2的导函数是如何得出的?提示:函数y=(3x+2)2可看作函数y=u2和u=3x+2的复合函数,∴yx′=yu′·ux...