电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

12.2.1三角形全等的判定(1)VIP免费

12.2.1三角形全等的判定(1)_第1页
12.2.1三角形全等的判定(1)_第2页
12.2.1三角形全等的判定(1)_第3页
12.2三角形全等的判定(1)教学目标(1)掌握三角形全等的“边边边”条件(2)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.教学重、难点(1)三角形全等条件的探索过程.(2)指导学生分析问题,寻找判定三角形全等的条件.自学指导1.通过课本第35页“探究1”,你能总结出什么结论?2.通过课本第35页“探究2”,你能总结出判定两个三角形全等的方法吗?3.独立完成课本第36页例题14.利用三边分别相等判断三角形全等的结论,利用尺规作图作一个角等于已知角5.独立完成课本第37页“练习”①AB=DEBC=EFCA=FD②③④A=DB=EC=F∠∠⑤∠∠⑥∠∠ABCDEF1、什么叫全等三角形?能够完全重合的两个三角形叫全等三角形。2、全等三角形有什么性质?知识回顾情境问题:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办?1.只给一个条件(一组对应边相等或一组对应角相等)。①只给一条边:②只给一个角:60°60°60°探究:2.给出两个条件:①一边一内角:②两内角:③两边:30°30°30°30°30°50°50°2cm2cm4cm4cm可以发现按这些条件画的三角形都不能保证一定全等。动手操作,验证猜想先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?画法:(1)画线段B′C′=BC;(2)分别以B′、C′为圆心,BA、BC为半径画弧,两弧交于点A′;(3)连接线段A′B′,A′C′.B’C’A’BCA三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,把所画的三角形分别剪下来,并与同伴比一比,发现什么?探究新知思考:你能用“边边边”解释三角形具有稳定性吗?判断两个三角形全等的推理过程,叫做证明三角形全等。AB=DEBC=EFCA=FDABCDEF用数学语言表述:在△ABC和△DEF中∴△ABCDEF≌△(SSS){例1.如下图,△ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。求证:△ABDACD≌△分析:要证明△ABDACD≌△,首先看这两个三角形的三条边是否对应相等。结论:从这题的证明中可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推出结论正确的过程。应用迁移①准备条件:证全等时要用的间接条件要先证好;②三角形全等书写三步骤:1.写出在哪两个三角形中2.摆出三个条件用大括号括起来3.写出全等结论证明的书写步骤:归纳作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.应用所学,例题解析ODBCA作法:(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.应用所学,例题解析O′C′A′ODBCA作法:(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.应用所学,例题解析O′D′C′A′ODBCA作法:(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.应用所学,例题解析O′D′B′C′A′ODBCA作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.已知:∠AOB.求作:∠A′O′B′=∠AOB.用尺规作一个角等于已知角.应用所学,例题解析1.已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB(如图),要用“边边边”证明△ABCFDE≌△,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?解:要证明△ABCFDE≌△,还应该有AB=DF这个条件 DB是AB与DF的公共部分,且AD=BF∴AD+DB=BF+DB即AB=DF练一练2.如图,AB=AC,AE=AD,BD=CE,求证:△AEBADC≌△。证明: BD=CE∴BD-ED=CE-ED,即BE=CD。在AE...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

教育精品店+ 关注
实名认证
内容提供者

优良的服务

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部