L/O/G/O函数的性质最大(小)值复习引入问题1函数f(x)=x2.在(-∞,0]上是减函数,在[0,+∞)上是增函数.当x≤0时,f(x)≥f(0),x≥0时,f(x)≥f(0).从而xR∈,都有f(x)≥f(0).因此x=0时,f(0)是函数值中的最小值.复习引入问题2函数f(x)=-x2.同理可知xR∈,都有f(x)≤f(0).即x=0时,f(0)是函数值中的最大值.函数最大值概念:讲授新课一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意xI∈,都有f(x)≤M.(2)存在x0I∈,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.函数最小值概念:讲授新课一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意xI∈,都有f(x)≥M.(2)存在x0I∈,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.例1设f(x)是定义在区间[-6,11]上的函数.如果f(x)在区间[-6,-2]上递减,在区间[-2,11]上递增,画出f(x)的一个大致的图象,从图象上可以发现f(-2)是函数f(x)的一个.画出下列函数的草图,并根据图象解答下列问题:1说出y=f(x)的单调区间,以及在各单调区间上的单调性;2指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(2)32)(xxf12)(2xxxfxyooxy2-1例3.求函数在区间[2,6]上的最大值和最小值.12xy解:设x1,x2是区间[2,6]上的任意两个实数,且x10,(x1-1)(x2-1)>0,于是)()(,0)()(2121xfxfxfxf即所以,函数是区间[2,6]上的减函数.12xy因此,函数在区间[2,6]上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4.12xy12xy例3、“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果在距地面高度hm与时间ts之间的关系为:h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它的爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)解:作出函数h(t)=-4.9t2+14.7t+18的图象(如图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由于二次函数的知识,对于h(t)=-4.9t2+14.7t+18,我们有:29)9.4(47.1418)9.4(45.1)9.4(27.142ht时,函数有最大值当于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这时距地面的高度为29m.总结:判断函数的最大(小)值的方法总结:判断函数的最大(小)值的方法1.利用二次函数的性质(配方法)求函数的最大(小)值2.利用图象求函数的最大(小)值3.利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);课堂练习课堂练习1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是()A、a≥3B、a≤3C、a≥-3D、a≤-3D2、已知函数f(x)=4x2-mx+1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f(x)在[1,2]上的值域____________.[21,49]1.最值的概念;课堂小结2.应用图象和单调性求最值的一般步骤.