电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

等腰三角形的判定教学设计2VIP免费

等腰三角形的判定教学设计2_第1页
1/5
等腰三角形的判定教学设计2_第2页
2/5
等腰三角形的判定教学设计2_第3页
3/5
《等腰三角形的判定》教案设计武宣县桐岭中学陈彦蓉设计思想:本节内容是学生在学习了等腰三角形的性质后学习的,利用这种定理之间的互逆关系,通过类比的方法教学,是这节内容学生易于接受的优势所在,等腰握是本节重点,也对后续的几何学习有重要作用。鉴于该级学生基础较差,因而对定理的探索这一难点进行分解,将问题化为五个低起点、缓坡度、环环相扣的小问题,使差生易于理解,同时让学生体验了深入细致分析的乐趣和重要性。在定理的应用教学中强调“由果索因、由因导果”的分析思路,并通过变式训练让学生体会定理的重要性。整个教学过程通过直观探索和抽象证明培养学生的逻辑思维能力。教学目标1.探索等腰三角形的判定定理。2.通过探索,让学生体会探索乐趣,进一步体验轴对称的特征,发展空间观念,并通过对定理的简单应用,加深对定理的理解,培养学生应用新知识解决实际问题的能力。教学重点:等腰三角形的判定定理及应用。教学难点:等腰三角形的判定定理探索。教学教法:问题引导,自主探究。学法指导:探索—明理—应用。教学过程:—、复习回顾、引入课题设计说明:对定理的理解与掌握,不仅要牢记文字语言,更重要的是要结合图形用符号语言准确地表达。1、等腰三角形的性质有哪些?结合图形回答:性质(1)文字语言:-----------符号语言:-------------性质(2)文字语言:①等腰三角形②底边上的高③底边上的中线④顶角平分线互相重合。符号语言:如果-----①②-------,那么------------如果-----①③-------,那么-------------如果-----①④-------,那么-------------2、满足什么条件的三角形是等腰三角形?(板书课题)请看下面的问题:二、新知探究设计说明:以实际问题展开数学思考,突出数学与现实的联系,类比等腰三角形性质定理进行猜测、叙述,让学生体验分析的重要性逐步培养学生在几何证明中的分析能力。1、提出问题,创设情景(出示幻灯片)注明:如果按照现在的教材内容直接进入全民学习,效果肯定欠佳,于是我就采用了这样的方法稍微改了一下题目。(1)问题中“两艘救生船同时到达出事地点”有何现实意义?结合生活经验说说您的看法。(联系地震、水灾等及时、全面救援)(2)为达这一目的,题目中有哪些已知条件?(方向、速度、时间)(3)就以上条件能得到什么结论?(路程相等,可以同时到达)(4)你认为同时到达的关键因素是什么?(角相等)(5)这种情况适合一般三角形吗?(乘胜追击,引入下文)3、抽象概括,归纳定理(1)上述问题的条件和结论放在一个三角形中,怎样用语言叙述?(引导学生说出定理内容)(2)像这种文字叙述的命题的证明,一般需那些步骤?(分析题意画出图形、写出已知和求证、然后证明)(3)这一结论就是等腰三角形的判定定理,它与性质有何异同?说说看。教学说明:将实际问题分解成几个低起点、缓坡度、环环相扣的小问题,让学生充分理解,不仅分散了难点,有利于思路的引导,而且让学生体验了分析的重要性,激发了兴趣,使差生更容易接受。三、应用举例设计说明:让学生再次经历命题的证明过程,通过变式训练,培养学生思维的发散性。1、(课本78页)例2重点分析题目中的已知条件与结论和定理的条件与结论之间的联系,有果索因、由因导果寻求思路)2、(课本78页)例3要点:(1)作图题。(写出作图和步骤)(2)已知底边和底边上的高作等腰三角形的作图方法。3、随堂练习:(课本79页练习)(1)折纸体验(2)板书证明(后一题中平行线在证明中的作用应引起重视)教学说明:本环节例题习题较多,但难度都不大,且题目之间有较多联系,引导学生边做边总结,注意观察每个等腰三角形在图中的位置以及与旧知识的联系,有利于培养学生解决综合问题的能力。四、课堂小结,布置作业设计说明:梳理等腰三角形部分的内容,通过比较,加深对判定和性质的理解,为进一步利用做好知识储备。1、通过本节学习,你判定等腰三角形有哪些方法?2等腰三角形的判定和性质有何练习与区别?作业:课本82页习题5,6题

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

等腰三角形的判定教学设计2

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部