1.6三角函数模型的简单应用学习目标1.掌握三角函数模型应用基本步骤:(1)根据图象建立解析式;(2)根据解析式作出图象;(3)将实际问题抽象为与三角函数有关的简单函数模型.2.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.。学习过程一、课前准备在我们现实生活中有很多现象在进行周而复始地变化,用数学语言可以说这些现象具有周期性,而我们所学的三角函数是刻画周期变化数量的典型函数模型,比如下列现象就可以用正弦型函数模型来研究,这节课我们就来探讨三角函数模型的简单应用。二、新课导学※学习探究[例1]在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为60°的B处,到11时10分又测得该船在岛北60°西、俯角为30°的C处。(1)求船的航行速度是每小时多少千米;(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?[例2]已知△ABC的三内角A、B、C满足A+C=2B,设x=cos,f(x)=cosB().(1)试求函数f(x)的解析式及其定义域;(2)判断其单调性,并加以证明;(3)求这个函数的值域.※动手试试1一、选择题1.(★★★★★)给出四个命题:(1)若sin2A=sin2B,则△ABC为等腰三角形;(2)若sinA=cosB,则△ABC为直角三角形;(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形.以上正确命题的个数是()A.1B.2C.3D.4二、填空题2.(★★★★)在△ABC中,已知A、B、C成等差数列,http://www.zxxk.com则的值为__________.3.(★★★★)在△ABC中,A为最小角,C为最大角,已知cos(2A+C)=-,sinB=,则cos2(B+C)=__________.※拓展三、解答题1.(★★★★)已知圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4,求四边形ABCD的面积.2.(★★★★)在△ABC中,a、b、c分别为角A、B、C的对边,.(1)求角A的度数;(2)若a=,b+c=3,求b和c的值.3.(★★★★)在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a、b、3c成等比数列,又∠A-∠C=,试求∠A、∠B、∠C的值.三、总结提升※学习小结2学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:一、选择题1.初速度v0,发射角为,则炮弹上升的高度y与v0之间的关系式为()A.B.C.D.2.当两人提重为的书包时,夹角为,用力为,则为____时,最小()A.B.C.D.3.某人向正东方向走x千米后向右转,然后朝新的方向走3千米,结果他离出发点恰好千米,那么x的值为()A.B.C.D.二、填空题4.甲、乙两楼相距60米,从乙楼底望甲楼顶仰角为,从甲楼顶望乙楼顶俯角为,则甲、乙两楼的高度分别为_______5.一树干被台风吹断折成角,树干底部与树尖着地处相距20米,树干原来的高度是_____.三、解答题6.三个力同时作用于O点且处于平衡,已知,,求3