电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

331函数的单调性与导数VIP免费

331函数的单调性与导数_第1页
1/41
331函数的单调性与导数_第2页
2/41
331函数的单调性与导数_第3页
3/41
判断函数单调性有哪些方法?比如:判断函数的单调性。yx2(,0)(0,)33?yxxxyo2yx函数在上为____函数,在上为____函数。图象法定义法减增如图:动态演示单调性导数的正负函数及图象(,0)在上递减(0,)在上递增xyoyfx()abxyoyfx()ab切线斜率的正负kxyo2()fxxk>0k>0k>0k>0k<0k<0k<0k<0++++----递增递增递减递减ab(,)在某个区间内,fx'()0fxab()(,)在内单调递增fx'()0fxab()(,)在内单调递减注意:应正确理解“某个区间”的含义,它必是定义域内的某个区间。1.应用导数求函数的单调区间(选填:“增”,“减”,“既不是增函数,也不是减函数”)(1)函数y=x-3在[-3,5]上为__________函数。(2)函数y=x2-3x在[2,+∞)上为_____函数,在(-∞,1]上为______函数,在[1,2]上为____________________________________函数。基础训练:增增增增减减既不是增函数,也不是减函数求函数的单调区间。变1:求函数的单调区间。3233yxx233yxx理解训练:'63yx解:11'0,'022yxyx令得令得233yxx1(,)2的单调递增区间为单调递减区间为1(,)2解:2'963(32)yxxxx2'003yxx令得或2'003yx令得3233yxx的单调递增区间为2(,0),(,)3总结:当遇到三次或三次以上的,或图象很难画出的函数求单调性问题时,应考虑导数法。①求定义域②求'()fx③令'()0()'()0()fxfxfxfx解不等式的递增区间解不等式的递减区间④作出结论1°什么情况下,用“导数法”求函数单调性、单调区间较简便?2°试总结用“导数法”求单调区间的步骤?cossin335(,)(,2)(,)(2,3)22.2..2.yxxxABCD函数在下面哪个区间内是增函数()(04年全国理)B(,2)该函数在上为增函数。xxxx(,2)sin0,sin0,如图,当时,yxxxxx''cos(cos)'(sin)'解:xxxxxxcossinossincy'0即:xyo23yxsin已知导函数的下列信息:23'()0;32'()0;32'()0.xfxxxfxxxfx当时,当或时,当或时,试画出函数图象的大致形状。()fx分析:()fx在此区间递减()fx在此区间递增()fxx图象在此两处附近几乎没有升降变化,切线平行轴ABxyo23()yfx2.应用导数信息确定函数大致图象ABxyo23()yfx已知导函数的下列信息:23'()0;32'()0;32'()0.xfxxxfxxxfx当时,当或时,当或时,试画出函数图象的大致形状。()fx分析:()fx在此区间递减()fx在此区间递增()fxx图象在此两处附近几乎没有升降变化,切线平行轴ABxyo23()yfx2.应用导数信息确定函数大致图象解:的大致形状如右图:()fx这里,称A,B两点为“临界点”xyo12()yfxxyo12()yfxxyo12()yfxxyo12()yfxxyo'()yfx2(A)(B)(C)(D)C(04浙江理工类)设是函数的导函数,的图象如右图所示,则的图象最有可能的是()()fx'()fx'()yfx()yfx通过这堂课的研究,你明确了,你的收获与感受是,你存在的疑惑之处有。(课本)322(),,,30()()()()()fxxaxbxcabcabfxRABCD函数其中为常数,当时,在上()增函数减函数常数既不是增函数也不是减函数A1.求过曲线y=x3-2x上的点(1,-1)的切线方程方程相切的直线且与曲线求过点11)1,1(.22xy求过某点的曲线的切线方程时,除了要判断该点是否在曲线上,还要分“该点是切点”和“该点不是切点”两种情况进行讨论,解法复制。若设M(x0,y0)为曲线y=f(x)上一点,则以M为切点的曲线的切线方程可设为y-y0=f’(x)(x-x0),利用此切线方程可以简化解题,避免疏漏。1.3.1函数的单调性与导数(4).对数函数的导数:.1)(ln)1(xx.ln1)(log)2(axxa(5).指数函数的导数:.)()1(xxee).1,0(ln)()2(aaaaaxxxxcos)(sin1)((3).三角函数:xxsin)(cos2)((1).常函数:(C)/0,(c为常数);(2).幂函数:(xn)/nxn1一、复习回顾:基本初等函数的导数公式函数y=f(x)在给定区间G上,当x1、x2G∈且x1<x2时yxoabyxoab1)都有f(x1)<f(x2),则f(x)在G上是增函数;2)都有f(x1)>f(x2),则f(x)在G上是减函数;若f(x)在G上是增函数或减函数,则f(x)在G上具有严格的单调性...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

331函数的单调性与导数

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部