江苏省高邮市界首中学高三数学复习25分钟小练习(12月25日)1、已知F是拋物线y2=x的焦点,A,B是该拋物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为。2、在抛物线C:y=2x2上有一点P,若它到点A(1,3)的距离与它到抛物线C的焦点的距离之和最小,则点P的坐标是。(1,2)3、已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的渐近线方程为。y=±x4、已知动点P(x,y)在椭圆+=1上,若A点的坐标为(3,0),|,|=1,且,·,=0,则|,|的最小值为________.5、设F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,若在直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是________.解析:(4)由|,|=1,A(3,0)知点M在以A(3,0)为圆心,1为半径的圆上运动,∵,·,=0且P在椭圆上运动,∴PM⊥AM,∴PM为⊙A的切线,连接PA(如图),则|,|==,∴当|,|min=a-c=5-3=2时,|,|min=.(5)设P,线段F1P的中点Q的坐标为,则直线F1P的斜率kF1P=,当直线QF2的斜率存在时,设直线QF2的斜率为kQF2=(b2-2c2≠0)由kF1P·kQF2=-1得y2=≥0,但注意到b2-2c2≠0,故2c2-b2>0,即3c2-a2>0,即e2>,故<e<1.当直线QF2的斜率不存在时,y=0,F2为线段PF1的中点.由-c=2c得e=,综上得≤e<1.答案:(1)(2)6、已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x+2ax0+2a≤0,若命题“p∨q”是假命题,求a的取值范围.解:由2x2+ax-a2=0,得(2x-a)(x+a)=0,∴x=或x=-a,∴当命题p为真命题时,≤1或|-a|≤1,∴|a|≤2.又“只有一个实数x0满足不等式x+2ax0+2a≤0”,即抛物线y=x2+2ax+2a与x轴只有一个交点,∴Δ=4a2-8a=0,∴a=0或a=2.∴当命题q为真命题时,a=0或a=2.∴命题“p∨q”为真命题时,|a|≤2.∵命题“p∨q”为假命题,∴a>2或a<-2.即a的取值范围为.