第七章平行线的证明5.三角形内角和定理(第1课时)教学目标:1.掌握三角形内角和定理的证明及简单应用。2.灵活运用三角形内角和定理解决相关问题。3.用多种方法证明三角形定理,培养一题多解的能力。4.对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.教学重点:灵活运用三角形内角和定理解决相关问题。教学难点:用多种方法证明三角形定理,培养一题多解的能力。教学过程:一、情境引入(1)用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果(1)(2)(3)(4)试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?二、探索新知1①看哪个同学想的方法最多?②用严谨的证明来论证三角形内角和定理.方法一:过A点作DE∥BC∵DE∥BC∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°∴∠BAC+∠B+∠C=180°(等量代换)方法二:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180°∴∠A+∠B+∠ACB=180°(等量代换)三、反馈练习(1)△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?若有1个直角另外两角有什么特点?(2)△ABC中,∠C=90°,∠A=30°,∠B=?(3)∠A=50°,∠B=∠C,则△ABC中∠B=?(4)三角形的三个内角中,只能有____个直角或____个钝角.(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?(7)已知:△ABC中,∠C=∠B=2∠A。(a)求∠B的度数;(b)若BD是AC边上的高,求∠DBC的度数?2ABCDEABCED四、课堂小结证明三角形内角和定理有哪几种方法?辅助线的作法技巧.三角形内角和定理的简单应用.五、布置作业课本第239页随堂练习;第241页习题6.6第1,2,3题六、教学反思3