电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2721第2课时三边成比例的两个三角形相似VIP免费

2721第2课时三边成比例的两个三角形相似_第1页
1/13
2721第2课时三边成比例的两个三角形相似_第2页
2/13
2721第2课时三边成比例的两个三角形相似_第3页
3/13
第二十七章相似27.2.1相似三角形的判定第2课时三边成比例的两个三角形相似1.复习已经学过的三角形相似的判定定理;2.掌握利用三边来判定两个三角形相似的方法.(重点、难点)已知:△ABC∽△A1B1C1.A1B1C1ABC111111.ABBCACABBCAC求证:ABCDA1B1C1证明:在线段(或它的延长线)上截取,过点D作,交于点E根据前面的定理可得.11AB1ADAB11DEBC∥11AC1111ADEABC∽由此得到三角形的判定定理:三边成比例的两个三角形相似.归纳合作探究例1判断图中的两个三角形是否相似,并说明理由.解:在△ABC中,AB>BC>CA,在△DEF中,DE>EF>FD.∴△ABC∽△DEF.ABCDFE31.83.52.142.4判定三角形相似的方法之一:如果题中给出了两个三角形的三边的长,分别算出三条对应边的比值,看是否相等,计算时最长边与最长边对应,最短边与最短边对应.方法归纳典例精析已知△ABC和△DEF,根据下列条件判断它们是否相似.(3)AB=12,BC=15,AC=24.DE=16,EF=20,DF=30.(2)AB=4,BC=8,AC=10.DE=20,EF=16,DF=8.(1)AB=3,BC=4,AC=6.DE=6,EF=8,DF=9.是否否(注意:大对大,小对小,中对中.)练一练例2如图,在Rt△ABC与Rt△A′B′C′中,∠C=∠C′=90°,且求证:△A′B′C′∽△ABC.''''1.2ABACABAC证明:由已知条件得AB=2A′B′,AC=2A′C′从而BC2=AB2-AC2=(2A′B′)2-(2A′C′)2=4A′B′2–4A′C′2=4(A′B′2-A′C′2)=4B′C′2=(2B′C′)2.从而由此得出,BC=2B′C′,因此△A′B′C′∽△ABC.(三边对应成比例的两个三角形相似)''1''''.2BCABACBCABAC例3如图,在△ABC和△ADE中,∠BAD=20°,求∠CAE的度数..ABBCACADDEAE解:∵∴△ABC∽△ADE(三边成比例的两个三角形相似).∴∠BAC=∠DAE.∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°.ABCDE1.根据下列条件,判断△ABC与△A´B´C´是否相似:AB=4cm,BC=6cm,AC=8cm,A´B´=12cm,B´C´=18cm,A´C´=21cm.''''''''''''4112361183821ABABBCBCACACABBCACABBCAC解:∴△ABC与△A´B´C´不相似.当堂练习2.如图,△ABC与△A′B′C′相似吗?你用什么方法来支持你的判断?CBAA′B′C′22.1ABACBCABACBCABCABC相似△与△.8,210,22;ABBCAC4,10,2;ABBCAC解:这两个三角形相似.设1个小方格的边长为1,则3.如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,求证:△ABC∽△EFD.∴△ABC∽△EFD.证明:∵△ABC中,点D、E、F分别是AB、BC、CA的中点,三边成比例的两个三角形相似利用三边判定两个三角形相似相似三角形的判定定理的运用课堂小结

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2721第2课时三边成比例的两个三角形相似

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部