数列专题复习(0929)一、证明等差等比数列1.等差数列的证明方法:(1)定义法:1nnaad(常数)(2)等差中项法:112(2)nnnaaan2.等比数列的证明方法:(1)定义法:1nnaqa(常数)(2)等比中项法:211(2)nnnaaang例1.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{nSn}的前n项和,求Tn.解:设等差数列{an}的公差为d,则Sn=na1+21n(n-1)d.∴S7=7,S15=75,∴,7510515,721711dada即,57,1311dada解得a1=-2,d=1.∴nSn=a1+21(n-1)d=-2+21(n-1). 2111nSnSnn,∴数列{nSn}是等差数列,其首项为-2,公差为21,∴Tn=41n2-49n.例2.设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,⋯)求证:数列{an}是等比数列;解:(1)由a1=S1=1,S2=1+a2,得a2=ttaatt323,32312又3tSn-(2t+3)Sn-1=3t①3tSn-1-(2t+3)Sn-2=3t②①-②得3tan-(2t+3)an-1=0∴ttaann3321,(n=2,3,⋯)所以{an}是一个首项为1,公比为tt332的等比数列.练习:已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,⋯(1)证明数列{lg(1+an)}是等比数列;(2)设Tn=(1+a1)(1+a2)⋯(1+an),求Tn及数列{an}的通项;答案.(2)213nnT,2131nna;二.通项的求法(1)利用等差等比的通项公式(2)累加法:1()nnaafn例3.已知数列na满足211a,nnaann211,求na。解:由条件知:111)1(1121nnnnnnaann分别令)1(,,3,2,1nn,代入上式得)1(n个等式累加之,即)()()()(1342312nnaaaaaaaa)111()4131()3121()211(nn所以naan111211a,nnan1231121(3)构造等差或等比1nnapaq或1()nnapafn例4.已知数列na满足*111,21().nnaaanN求数列na的通项公式;解:*121(),nnaanNQ112(1),nnaa1na是以112a为首项,2为公比的等比数列。12.nna即*21().nnanN例5.已知数列na中,11a,1111()22nnnaa,求na.解:在1111()22nnnaa两边乘以12n得:112(2)1nnnnaa令2nnnba,则11nnbb,解之得:111nbbnn,所以122nnnnbna.练习:已知数列}a{n满足)(2n12a2an1nn,且81a4。(1)求321aaa,,;(2)求数列}a{n的通项公式。解:(1)33a13a5a321,,(2)n1nnn1nn2)1a(21a12a2a1n21a121a21ann1n1nnn∴12)1n(ann(4)利用1(2)1(1)nnSSnSnna例6.若nS和nT分别表示数列{}na和{}nb的前n项和,对任意正整数2(1)nan,34nnTSn.求数列{}nb的通项公式;解:22(1)4231anadSnnnnQ23435TSnnnnn⋯⋯2分当1,35811nTb时当2,6262.1nbTTnbnnnnn时⋯⋯4分练习:1.已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an解: 10Sn=an2+5an+6,①∴10a1=a12+5a1+6,解之得a1=2或a1=3又10Sn-1=an-12+5an-1+6(n≥2),②由①-②得10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0 an+an-1>0,∴an-an-1=5(n≥2)当a1=3时,a3=13,a15=73a1,a3,a15不成等比数列∴a1≠3;当a1=2时,a3=12,a15=72,有a32=a1a15,∴a1=2,∴an=5n-32.设数列na的前n项的和14122333nnnSa,1,2,3,nggg(Ⅰ)求首项1a与通项na;(Ⅱ)设2nnnTS,1,2,3,nggg,证明:132niiT解:(I)21114122333aSa,解得:12a2111144122333nnnnnnnaSSaa11242nnnnaa所以数列2nna是公比为4的等比数列所以:111224nnnaa得:42nnna(其中n为正整数)(II)1114124122242221213333333nnnnnnnnSa112323112221212121nnnnnnnnTS所以:1113113221212niniT(5)累积法nnanfa)(1转化为)(1nfaann,逐商相乘.例7.已知数列na满足321a,nnanna11,求na。解:由条件知11nnaann,分别令)1(,,3,2,1nn,代入上式得)1(n个等式累乘之,即3241231nnaaaaaaaann1433221naan11又321a,nan32练习:1.已知31a,nnanna23131)1(n,求na。解:13(1)13(2)1321313(1)23(2)232232nnnaann3437526331348531nnnnnL。2.已知数列{an},满足a1=1,1321)1(32nnanaaaa(n≥2),则{an}的通项1___na12nn解:由已知,得nnnnaanaaaa13211)1(32,用此式减去已知式,得当2n时,nnnnaaa1,即nnana)1(1,又112aa,naaaaaaaaann13423121,,4,3,1,1,将以上n个式子相乘,得2!nan)2(n(6)倒数变形:1n...