****提公因式法分组分解法公式法十字相乘法[4]1-16m2+8mn-n2[3]x3-x2y-xy2+y3[1]a2(x-1)+b2(1-x)[2]-16a2b4+8ab3c2-b2c4一、判断下列因式分解是否正确:(1)15b3–24b2=b2(15b–24)()(2)4a3+6a2+2a=2a(2a2+3a)()(3)–4x2y+2xy2–12xy=–2xy(2x+y–6)()(4)x2y2–49x2=(xy+7x)(xy–7x)()(5)–x2–8x–16=(–x–4)2()(6)(x+y)2+(x+y)–20=(x+y+5)(x+y–4)()二、选择题:(1)把a2–9x2+6x–1因式分解时,下列分组方法正确的是()(A)(a2–9x2)+(6x–1)(B)(a2–1)+(–9x2+6x)(C)a2+(–9x2+6x–1)(D)(a2+6x)–(9x2+1)二、选择题:(2)下列各多项式适用完全平方公式因式分解的是()(A)x2–8x–16(B)x2+8x–16(C)(x–2y)2–8(x–2y)+16(D)x2–8(2y–x)+16二、选择题:(3)下列各式因式分解正确的是()(A)x2–7x+8=(x–8)(x+1)(B)x2+7x+8=(x+8)(x+1)(C)x2–7x–8=(x+8)(x–1)(D)x2+7x–8=(x+8)(x–1)三、将下列各式因式分解:(1)–3x+3x9(2)2x4–4x2y2+2y4(3)ax2+by2+ay2+bx2(4)z2–(x+y)2–2(x+y)–1(5)m2–2mn+n2–5m+5n+6(6)x2+2xy+y2–x–y–6谈谈自己的收获!利用分组分解法分解因式:*(1)m2–mn–6n2+m+7n–2*(2)2x2+3xy–2y2+4x–7y–6完成学习单