电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 1.2.1“且”与“或”练习 新人教B版选修2-1-新人教B版高二选修2-1数学试题VIP免费

高中数学 1.2.1“且”与“或”练习 新人教B版选修2-1-新人教B版高二选修2-1数学试题_第1页
1/4
高中数学 1.2.1“且”与“或”练习 新人教B版选修2-1-新人教B版高二选修2-1数学试题_第2页
2/4
高中数学 1.2.1“且”与“或”练习 新人教B版选修2-1-新人教B版高二选修2-1数学试题_第3页
3/4
1.2.1“且”与“或”一、选择题1.命题“△ABC是等腰直角三角形”的形式是()A.p∨qB.p∧qC.¬pD.以上都不对[答案]B[解析]△ABC是等腰直角三角形是由△ABC是等腰三角形与△ABC是直角三角形用“且”联结而成,是p∧q命题.2.对命题p:A∩∅=∅,命题q:A∪∅=A,下列判断正确的是()A.p且q为假B.p或q为假C.p且q为真,p或q为假D.p且q为真,p或q为真[答案]D[解析]由题意知,p真,q也真.故p且q为真,p或q为真.3.命题“方程x2-4=0的解是x=±2”中,使用的逻辑联结词的情况是()A.没有使用联结词B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“非”[答案]B[解析]x=±2是指x=2或x=-2.4.下列命题中既是p∧q形式的命题,又是真命题的是()A.10或15是5的倍数B.方程2x2-4x-6=0的两根是3和-1C.方程x2+1=0没有实数根D.有两个角为45°的三角形是等腰直角三角形[答案]D[解析]由联结词意义知选D.5.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对[答案]B[解析] p为真,q为假,∴“p∨q”为真,故选B.6.如果命题p∨q为真命题,p∧q为假命题,那么()A.命题p,q都是真命题B.命题p,q都是假命题C.命题p,q只有一个是真命题D.命题,p,q至少有一个是真命题[答案]C[解析]“p∨q”为真,则至少p、q有一真,p∧q为假,则至少p、q有一假,∴p、q一真一假,故选C.二、填空题7.已知命题p:1∈{x|x21;若q真,则可得a>4.“p或q”为真,则a>1或a>4,得a>1,所以实数a的取值范围是(1,+∞).8.已知条件p(x):x2+2x-m>0,如果p(1)是假命题,p(2)是真命题,则实数m的取值范围是________.[答案]3≤m<8[解析]由p(1)是假命题,知12+2×1-m=3-m≤0,得m≥3;由p(2)是真命题,知22+2×2-m=8-m>0,得m<8.所以m的取值范围是3≤m<8.三、解答题9.分别指出由下列各组命题构成的“p或q”、“p且q”形式,并判断真假.(1)p:2n-1(n∈Z)是奇数;q:2n-1(n∈Z)是偶数.(2)p:a2+b2<0(a∈R,b∈R);q:a2+b2≥0.(3)p:集合中元素是确定的;q:集合中元素是无序的.(4)p:π是无理数;q:不是实数.(5)p:9是质数;q:8是12的约数.(6)p:∅={0};q:∅⊆∅.[解析](1)“p或q”:2n-1(n∈Z)是奇数或是偶数,真命题;“p且q”:2n-1(n∈N)既是奇数又是偶数,假命题.(2)“p或q”:a2+b2<0或a2+b2≥0(a,b∈R),真命题;“p且q”:a2+b2<0且a2+b2≥0(a,b∈R),假命题.(3)“p或q”:集合中的元素是确定的或是无序的,真命题;“p且q”:集合中的元素是确定的且是无序的,真命题.(4)“p或q”:π是无理数或者不是实数,真命题;“p且q”:π是无理数并且不是实数,假命题.(5)“p或q”:9是质数或者8是12的约数,假命题;“p且q”:9是质数且8是12的约数,假命题.(6)“p或q”:∅={0}或∅⊆∅,真命题;“p且q”;∅={0}且∅⊆∅,假命题.一、选择题1.命题“矩形的对角线相等且互相平分”是()A.简单命题B.“p∨q”形式的复合命题C.“p∧q”形式的复合命题D.“¬p”形式的复合命题[答案]C[解析]由定义可知选C.2.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.¬p是真命题D.¬q是真命题[答案]D[解析]本题主要考查逻辑连接词.利用命题真值表进行判断.根据命题真值表知,q是假命题,¬q是真命题.3.命题p:如果∀a,b∈R,|a|+|b|>1,那么|a+b|>1;命题q:函数y=的定义域是(-∞,-1]∪[3,+∞),那么()A.“p或q”为假命题B.“p且q”为真命题C.命题p为真命题,命题q为假命题D.命题p为假命题,命题q为真命题[答案]D[解析]因为∀a,b∈R,都有|a|+|b|≥|a+b|,所以|a|+|b|>1不能推出|a+b|>1,故p为假命题;显然函数y=的定义域,满足不等式|x-1|-2≥0,解得x≤-1或x≥3,所以q是真命题,故选D.4.已知命题p:不等式|x-1|>m的解集是R,命题q:f(x)=在区间(0,+∞)上是减函数.如果命题“p或q”为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 1.2.1“且”与“或”练习 新人教B版选修2-1-新人教B版高二选修2-1数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部