第一讲概率、统计、统计案例1.(2019·咸阳二模)PM2.5是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即PM2.5日均值在35μg/m3以下空气质量为一级,在35μg/m3~75μg/m3空气质量为二级,超过75μg/m3为超标.如图是某地12月1日至10日的PM2.5(单位:μg/m3)的日均值,则下列说法不正确的是()A.这10天中有3天空气质量为一级B.从6日到9日PM2.5日均值逐渐降低C.这10天中PM2.5日均值的中位数是55D.这10天中PM2.5日均值最高的是12月6日解析:由题图可知A、B、D正确.故选C.答案:C2.(2019·成都模拟)为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A.①③B.①④C.②③D.②④解析:甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.答案:C3.(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a和b,则方程ax2+bx+1=0有实数解的概率是()A.B.C.D.解析:投掷骰子两次,所得的点数a和b满足的关系为∴a和b的组合有36种,若方程ax2+bx+1=0有实数解,则Δ=b2-4a≥0,∴b2≥4a.当b=1时,没有a符合条件;当b=2时,a可取1;当b=3时,a可取1,2;当b=4时,a可取1,2,3,4;当b=5时,a可取1,2,3,4,5,6;当b=6时,a可取1,2,3,4,5,6.满足条件的组合有19种,则方程ax2+bx+1=0有实数解的概率P=,故选C.答案:C4.(2019·湘中名校联考)利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度.如果k>3.841,那么有把握认为“X和Y有关系”的百分比为()P(K2>k0)0.500.250.150.100.050.0250.010k00.4551.3232.0722.7063.8415.0246.635A.5%B.75%C.99.5%D.95%解析:由表中数据可得,当k>3.841时,有0.05的机率说明这两个变量之间的关系是不可信的,即有1-0.05=0.95的机率,也就是有95%的把握认为变量之间有关系,故选D.答案:D5.(2019·西安模拟)从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A.B.C.D.解析:从1,2,3,4中任取两个不同的数字构成一个两位数,有12,13,14,21,23,24,31,32,34,41,42,43,共12种结果,其中大于30的两位数有31,32,34,41,42,43,共6个,所以这个两位数大于30的概率P==.故选A.答案:A6.(2019·湖北七市(州)联考)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费x和销售额y进行统计,得到统计数据表(单位:万元):广告费x23456销售额y2941505971由表格可得回归方程为y=10.2x+a,据此模型,预测广告费为10万元时的销售额约为()A.101.2万元B.108.8万元C.111.2万元D.118.2万元解析:根据统计数据表,可得=×(2+3+4+5+6)=4,=×(29+41+50+59+71)=50,而回归直线y=10.2x+a经过样本点的中心(4,50),∴50=10.2×4+a,解得a=9.2,∴回归方程为y=10.2x+9.2.当x=10时,y=10.2×10+9.2=111.2.故选C.答案:C7.(2019·长春模拟)如图所示是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图象,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图象,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A.0B.1C.2D.3解析:①由图可知一班每次考试的平均成绩都在年级平均成绩之上,故①正确.②由图可知二班平均成绩的图象高低变化明显,可知成绩不稳定,波动程度较大,故②正确.③由图可知三班平均成绩的图象呈上升趋势,并且图象的大部分都在年级平均成绩图象的下方,故③正确.故选D.答案:D8.(20...