2.2.2反证法A级:基础巩固练一、选择题1.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”,下列假设中正确的是()A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个是偶数答案B解析用反证法证明命题时,“a,b,c中至少有一个是偶数”的反设为假设a,b,c都不是偶数.故选B.2.设a,b,c大于0,则3个数:a+,b+,c+的值()A.都大于2B.至少有一个不大于2C.都小于2D.至少有一个不小于2答案D解析假设a+,b+,c+三个数都小于2,则必有a++b++c+<6,而++=++≥2+2+2=6,故二者相矛盾,所以假设不成立.3.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0答案D解析“不全为0”的对立面为“全为0”,故“不全为0”的含义为“至少有一个不为0”.4.设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“P·Q·R>0”是“P,Q,R同时大于零”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析必要性显然成立.充分性:若P·Q·R>0,则P,Q,R同时大于零或其中两个负的一个正的,不妨设P<0,Q<0,R>0. P<0,Q<0,即a+b1,求证:a,b,c,d中至少有一个是负数.证明假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1.又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c,d中至少有一...