二次函数的知识结构一般地,把形如y=ax²+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。对称轴为直线,顶点坐标,交点式为(仅限于与x轴有交点和的抛物线),与x轴的交点坐标是和。注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。二次函数公式大全二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)²;+k[抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b²;)/4ax1,x2=(-b±√b²;-4ac)/2aIII.二次函数的图象在平面直角坐标系中作出二次函数y=x??的图象,可以看出,二次函数的图象是一条抛物线。IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b²;)/4a]。当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b²-4ac>0时,抛物线与x轴有2个交点。Δ=b²-4ac=0时,抛物线与x轴有1个交点。Δ=b²-4ac<0时,抛物线与x轴没有交点。V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax²;+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²;+bx+c=0此时,函数图象与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。